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Figure	0.	Phase	plane,	or	phase	portrait	(left)	and	resistance	portrait	of	the	vdP	oscillator	

	
Implemented	behaviour	
Although	named	a	vdP-oscillator,	this	module	is	not	an	oscillator	in	the	classical	sense.	The	
implemented	circuit	is	best	considered	a	feedback	patch	that	is	able	to	expose	very	different,	
characteristic	behaviours.	Depending	on	its	control	settings,	the	circuit	can	behave	as	a	filter,	
an	 oscillator,	 a	 frequency	 multiplier	 (ring-modulator),	 a	 phase-locked-loop	 (PLL),	 a	 noise	
shaper,	 or	 even	 a	 tone-burst	 generator.	 Furthermore,	 the	 circuit	 is	 able	 to	 suddenly	 and	
chaotically	switch	between	these	various	behaviours,	but	it	can	also	be	steered	into	settings	
where	it	fluently	and	predictably	morphs	between	the	different	output	modalities.	
	
Inside	
The	 heart	 of	 the	 patch	 implements	 a	 state-variable	 band-filter	 circuit,	 that	 in	 its	 basic	
electrical	response	models	the	mechanical	response	of	a	physical	mass-spring	system	driven	
by	an	external	force.	As	the	vdP-oscillator	is	an	extension	on	this	band-filter	circuit,	the	output	
of	 the	 module	 will	 also	 be	 associated	 with	 one	 characteristic	 “resonance”	 frequency.	
However,	contrary	to	a	normal	band	filter,	the	special	internal	feedback	mechanism	that	is	
employed	is	self-balancing	on	the	edge	of	distortion	and	thereby	favours	a	vibration	pattern	
that	 derives	 from	 the	 sinusoidal	 path	 and	 inclines	 to	 a	 typical	 vdP-waveform.	 This	 vdP-
waveform	is	fairly	comparable	to	a	square	wave,	but	one	with	rounded	edges	and	plateaus	
that	gradually	 fall	over	 time	(top	channel	 in	Figures	1	&	2).	Note	the	up/down	alternating	
symmetry	in	the	vdP-waveform	for	the	y(t),	y’(t)	and	y’’(t)	signals	that	is	characteristic	to	the	
square	 wave	 too.	 Comparably,	 the	 y(t),	 y’(t)	 and	 y’’(t)	 signal	 spectra	 will	 only	 have	 odd	
harmonics	(see	Figure	3).		



	
Figure	1.	Signals	at	different	points	in	the	vdPol	circuit	for	μ=10.		

	
Figure	2.	Signals	at	different	points	in	the	vdPol	circuit	for	μ=5.	
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Figure	3.	Spectra	for	the	signals	at	different	points	in	the	vdPol	circuit	for	μ=10.		
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Modulation	
When	the	vdP	oscillator	is	driven	by	an	external	oscillator	(connected	to	the	external	force	
input)	or	when	for	instance	two	vdP-oscillators	are	coupled,	the	circuit	may	show	a	behavior	
that	is	completely	different	from	results	obtained	with	other	modules	that	are	available	in	the	
analog	studio.	The	output	will	be	neither	a	band	filtered	version	of	the	input,	nor	an	amplitude	
modulation,	but	something	in	between.	Depending	on	the	frequency	(mis)match,	the	output	
will	either	be:	
state	(A)	where	the	VdP	entirely	locks	its	internal	oscillation	to	the	external	driving	frequency.	
This	mechanism	works	whatever	the	exact	shape	of	the	incoming	waveform,	while	still	the	
characteristic	vdP	waveform	remains	preserved,	or:	
state	(B)	where	the	vdP	circuit	oscillates	completely	independent	from	the	external	source,	
leading	to	an	amplitude	modulated	mix	at	the	output.		
The	moment	of	locking	or	unlocking	to	one	of	the	two	regimes	is	only	partly	predictable.1		
A	stronger	driving	force	at	the	input	will	increase	the	chance	that	the	system	gets	frequency	
locked,	 but	 increasing	 the	 μ	 -the	 meaning	 or	 physical	 interpretation	 of	 this	 μ-control	
parameter	will	 be	 further	 explained	 later-	will	make	 the	 system	again	more	 resistant	 and	
critical	 on	 the	minimal	 frequency	distance	needed	 for	 this	 locked	 ‘slave’	 behaviour.	Once	
frequency	(Phase)	locked,	the	vdP-circuit	has	a	tendency	to	stay	locked,	even	when	the	input	
frequency	changes	to	a	value	that	it	would	not	sync-to	in	a	free,	unlocked,	situation	(this	is	
called	a	hysteresis	effect).	Once	caught,	the	system	can	be	dragged	away	from	its	preferred	
frequency,	but	once	unlocked	again	it	falls	back	to	its	original	preference.	
	
Relaxation	oscillator	
The	vdP	circuit	 is	a	relaxation	oscillator.	What	 this	qualification	 implies	 in	practice	 is	best	
exposed	and	exploited	with	a	setting	where:	(A)	the	μ-control	is	given	a	high	value	(favouring	
fast	accelerations-decelerations	to	occur),	(B)	the	oscillatory	frequency	‘f’	is	brought	down	to	
a	very	low	frequency	(low	spring	stiffness)	and	(C)	the	knob	(osc/filter	mix)	is	turned	in	the	
ocs-direction	to	expose	maximal	vdP	behaviour.	In	this	setting,	the	vdP-oscillatory	cycle	will	
show	a	typical	vibration	pattern	where	a	rapid	jump	in	polarity	(the	relaxation	moment),	will	
be	followed	by	an	elongated	recovery	phase	during	which	the	output	gradual	falls	down	to	
amplitude	level	+/-	1;	from	where	again	a	relaxation	jump	to	the	opposite	polarity	is	induced,	
and	 so	alternating	on.	There	are	 thus	 two	 relaxation	 instances	 (jump	up	and	 jump	down)	
within	 a	 period.	 In	 fact,	 the	 electronic	 circuit	 that	 provokes	 the	 jump	 is	 tapped	 and	 the	
absolute	values	of	the	sensed	electronic	‘kicks’	are	presented	as	the	double	frequency	output	
(see	Figs	1,2,3	).	To	understand	how	to	exploit	this	relaxation	behaviour	it	is	better	to	first	
understand	the	implemented	principle.	
	
The	connected	physical	model	
The	 typical	 vdP-waveform	 that	 emerges	 from	 the	 circuit	 reflects	 the	 properties	 of	 a	 very	
specific	and	clever	designed	self-balancing	(+/-)	feedback	mechanism	that	Balthasar	van	der	
Pol	 invented	in	the	1930-ies.	This	mechanism	and	much	of	the	behaviour	described	above	
becomes	easier	to	understand,	and	thereby	more	efficiently	controlled	or	abused,	by	grasping	
the	physics	of	the	mechanical	model	that	this	electrical	system	simulates.		
																																																								
1	The	general	name	for	this	frequency	locking	effect	is	‘Arnold	Tongues’	and	the	fact	this	
might	not	be	a	familiar	term	to	you	perhaps	demonstrates	the	specialty	of	this	type	of	
oscillator.	



	
Physical	parameters	as	voltages	
Many	concepts	of	a	mechanical	system	have	an	electrical	analogue.	For	instance,	the	concept	
of	mechanical	resistance	is	completely	comparable	to	the	concept	of	electrical	resistance.	A	
mechanical	displacement	could	be	conceptually	matched	to	a	change	in	voltage	and	similarly	
a	mechanical	velocity	could	be	conceptually	matched	to	an	amount	of	charge	flowing	per	time	
unit	 through	 an	 electronic	 part	 (a	 current	 as	 a	measure	 of	 the	 speed	of	 voltage	 change).	
However,	a	current	running	through	a	resistor	will	again	produce	a	proportional	voltage	over	
this	resistor.	This	voltage	difference	perfectly	shadows	the	current	and	thus	a	voltage	level	
may	conceptually	represent	a	velocity	too.	So,	in	the	actual	electrical	implementation	of	the	
physical	model,	 the	matching	of	mechanical	parameters	 to	an	electrical	 analogue	 is	not	a	
simple	one-to-one	translation.	The	art	of	designing	an	electronic	model	of	a	physical	system,	
is	 how	 to	 scale	 each	 “parameter”	 of	 the	mechanical	model	 as	 a	 representative	 electrical	
voltage	appearing	somewhere	in	the	circuit.		For	instance,	within	the	electronic	design	of	the	
state-variable	filter	that	simulates	a	mass-spring	system,	there	are	typically	three	designated	
points	in	the	schematic	that	represent:	(1)	the	virtual	displacement	(called	the	LP	output),	(2)	
the	virtual	velocity	(called	the	BP	output),	and	(3)	the	virtual	acceleration/force	(called	the	HP	
output).	All	 three	physical	parameters	are	 time	varying	signals	 that	can	be	simultaneously	
probed	within	the	electrical	circuit.	Apart	from	probing,	time-varying	signals	can	be	added	at	
designated	points	in	the	circuit	to	change	or	modulate	the	modelled	physical	property.	For	
instance,	 the	voltage	control	 input	 in	 “audio/CV”	adds	a	voltage	 to	 the	acceleration/force	
point	to	simulate	an	external	driving	of	the	virtual	mass	of	the	system.	In	the	vdP-circuit,	there	
is	a	designated	point	where	the	sensed	voltage	represents	the	mechanical	resistance	in	the	
modelled	physical	system.	The	earlier	mentioned	voltage	controlled	μ-parameter	allows	you	
to	modulate	(rescale)	this	simulated	resistance.	
	
The	mechanical	model	
The	next	graph	sketches	schematically	the	physical	system	that	is	modelled	by	the	electronic	
vdP-circuit:	
	
	
	
	

	
Figure	4.	The	x-axis	measures	the	horizontal	displacement	of	the	virtual	mass	that	is	connected	
to	a	virtual	spring	that	is	at	equilibrium	at	x=0.	The	(x2-1)	function	on	the	y-axis	specifies	the	
virtual	 resistance	 this	 mass	 feels	 locally	 when	 it	 moves	 through	 a	 virtual	 medium	with	 a	
viscosity	gradient	that	varies	with	the	displacement.		
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Potentials	 (voltages)	 in	 an	 electric	 circuit	will	 not	 change	 if	 there	 are	 no	 currents	 flowing	
through	the	electronic	parts.	Similarly,	the	above	modelled	physical	system	will	not	gain	or	
lose	potential	energy	if	the	mass	does	not	move.	When	the	mass	in	Fig.	4.	would	be	displaced	
horizontally	from	its	equilibrium	position	(at	x=0)		by	a	short	push	from	an	external	force,	the	
system	will	respond	with	a	familiar	sinusoidal	movement	due	to	the	working	of	the	spring.	
During	this	cycle,	 there	 is	a	periodic	exchange	between	kinetic	energy	 (mass	velocity)	and	
potential	energy	(stretching	of	the	spring).	The	kinetic	energy	 is	at	 its	maximum	when	the	
mass	due	to	its	inertia	crosses	the	zero	point.	In	the	next	phase	of	the	cycle,	this	kinetic	energy	
is	 fully	 exchanged	 for	 potential	 energy	when	 the	mass	 loses	 velocity	while	 stretching	 the	
spring	to	its	highest	amplitude.	Note,	that	at	points	of	maximum	amplitude	deflection	(zero	
velocity)	there	will	never	be	any	frictional	energy	exchange	with	the	environment.	A	trivial,	
but	 not	 unimportant	 insight,	 is	 that	 only	 by	movement	 a	 system	 can	 lose	 or	 gain	 kinetic	
energy.	 In	 the	 process	where	 kinetic	 energy	 is	 lost	 to-,	 or	 gained	 from	 the	 surroundings,	
having	more	velocity	 ‘v’	and/or	finding	more	resistance	 ‘R’,	both	 lead	to	a	 larger	frictional	
force	 Ffriction=v.R.	 It	 is	 the	 application	 of	 this	 force	 over	 the	 travelled	 distance	
(Force*displacement=Work)	that	determines	the	energy	dissipation	to	the	environment.	A	
basic	insight	is	that	by	dynamically	controlling	the	amount	of	resistance	(while	not	actively	
controlling	the	velocity),	the	rate	at	which	a	system	may	lose	(or	gain)	kinetic	energy	(velocity)	
can	be	modulated,	and	thus	a	self-sustaining	oscillatory	mechanism	can	be	constructed.		
	
Variable	resistance	
The	heart	of	the	vdPol-oscillator	 is	centred	around	the	concept	of	having	a	resistance	that	
varies	as	a	function	displacement.	The	(x2-1)	function	sketched	in	the	above	figure	is	the	actual	
dependence	 implemented	 in	 the	 electronic	 vdP-circuit.	 The	 curve	 illustrates	 that	 the	
resistance	 of	 the	medium	 through	which	 the	mass	moves	 is	 not	 uniform.	 The	 resistance	
increases	with	a	 squared	 factor	when	moving	either	 to	 the	 left	or	 right	extreme	 (you	can	
interpret	this	as	the	surrounding	fluid	rapidly	becomes	more	viscous	further	away	from	the	
equilibrium	position).	A	varying	resistance	means	that	for	the	same	velocity	value,	depending	
on	where	the	mass	is	moving	along	the	x-axis,	the	system	may	lose	(or	gain)	different	portions	
of	kinetic	energy	while	moving.	Note	that	the	sketched	resistance	gradient	 in	Fig.	4.	 is	not	
representing	a	force	field	or	potential	that	will	automatically	set	the	mass	into	motion.	When	
there	is	no	movement	(zero	velocity),	there	will	be	no	resistive	force	acting	that	could	displace	
the	mass	or	guarantee	an	energy	exchange	with	the	environment.	This	is	why	there	is	a	spring	
added	to	the	vdP-model,	as	this	mechanical	element	will	guarantee	a	basic	initial	oscillatory	
movement	where	the	spring	periodically	drives	the	mass	back	and	forth	along	the	x-axis.	With	
the	 resistive	 force	 factor	 scaled	 down	 to	 zero,	 (by	 zeroing	 the	 μ	 control	 parameter	 that	
vertically	scales	this	function),	the	vdP-oscillator	will	behave	as	a	classical	mass-spring	system	
that	does	not	 gain	or	 lose	energy,	 and	will	 respond	as	 a	band	 filter	with	a	 corresponding	
sinusoidal	motion.	By	upscaling	the	resistance	effect	of	the	above	gradient	function	(with	the	
μ	 control),	 the	 initial	 sinusoidal	motion	will	 get	modulated	as	a	 function	of	 the	 current	 x-
displacement	and	as	a	result	the	sinusoidal	periodic	motion	gradually	deforms	to	the	typical	
vdP-waveform.	The	cycle	duration	will	change	too	as	a	result	of	the	different	resistances	felt	
along	the	cyclic	path.		
	



	
Figure	5.	Displacement	(now	vertically)	waveform	as	a	function	of	time	(horizontal	axis).	
	
	
Traversing	the	negative	resistance	zone	
Let	us	inspect	the	path	of	the	mass	movement	and	sketch	its	physical	state	as	a	function	of	
time	(horizontally)	in	detail	(see	Fig.	5).	Note,	that	the	first	horizontally	oriented	displacement	
axis	from	fig.	4,	is	now	rotated	90	degrees	and	displacement	is	projected	vertically	as	y-axis.	
We	start	at	the	moment	just	following	a	positive	zero-crossing	jump.	The	virtual	moving	mass	
that	is	modelled	by	the	electrical	system,	will	start	to	lose	virtual	velocity	once	it	comes	above	
absolute	amplitude	 ‘+1’.	Once	outside	 the	 central	 region	between	 the	 two	blue	 lines,	 the	
resistance	 is	 always	 positive,	 which	 means	 damping,	 or	 energy	 loss.	 The	 damping	 factor	
increases	with	more	extreme	displacement	amplitudes.	The	virtual	material	gets	only	stickier	
and	more	resistant	the	larger	the	amplitude,	and	thus	any	movement	rapidly	stops.	The	only	
force	that	can	release	the	clogged	mass	from	the	modelled	sticky	medium	is	the	spring	that	
will	gradually	pull	the	mass	back	to	the	midline.	The	way	out	of	this	viscous	material	may	at	
first	be	a	slow	process,	but	there	is	hope…	as	with	lower	displacement	amplitudes,	the	virtual	
surrounding	gets	 less	and	 less	viscous.	Actually,	 the	 resistance	decreases	with	a	quadratic	
factor	when	the	amplitude	decreases	to	zero,	and	so	the	pull	of	the	modelled	spring	becomes	
more	 effective,	 and	 the	 velocity	 increases	 rapidly	 (the	 mass	 accelerates).	When	 crossing	
displacement	amplitude	value	‘+1’	a	curious	phenomenon	happens;	the	virtual	resistance	of	
the	surrounding	material	becomes	negative!	A	negative	resistance	is	not	a	familiar	physical	
phenomenon,	 but	we	 are	 in	 a	 virtual	 environment	where	weird	 things	may	 happen.	 This	
virtual	anti-resistance	theoretically	implies	that	there	will	be	a	force	acting	in	the	direction	
the	 object	 is	 already	 moving,	 where	 a	 larger	 negative	 resistance	 implies	 more	 force	 per	
velocity	unit.	As	a	 result	of	 this	anti-resisting	 force,	 the	velocity	will	 increase	on	 itself	and	
between	the	blue	lines	the	mass	accelerates	exponentially.	Note,	that	at	displacement=0	the	
negative	resistance	is	at	its	minimum.	Thus,	at	the	point	where	the	spring	force	will	be	zero,	
there	is	maximum	acceleration	due	to	the	anti-resisting	force	finding	a	maximum.	Effectively,	
the	mass	will	launch	itself	over	the	zero	crossing.	After	the	crossing,	the	negative	resistance	
gradually	 gets	 less	 extreme,	 but	 still	 remains	 negative.	 Although	 the	 anti-resisting	 force	
ceases,	the	accelerating	force	is	not	yet	changing	sign.	The	mass	will	still	gain	velocity,	and	
thus	kinetic	energy,	as	long	as	the	force	is	in	the	direction	it	is	travelling.	Once	outside	the	
section	bounded	by	the	two	horizontal	blue	lines	at	amplitudes	-1	&	+1,	the	resistance	curve	
will	again	be	positive	(damping),	and	deceleration	sets	in.	Due	to	its	high	velocity,	the	mass	
will	rapidly	enter	the	high	viscosity	zone	and	lose	most	of	the	kinetic	energy	that	it	gained	
along	the	zero-crossing	path	almost	 instantly.	That	the	decelerating	force	 increases	with	a	
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quadratic	factor	helps	a	lot	decelerate	fast.	The	mass	is	now	at	the	other	extreme	deflection	
point,	and	with	nearly	no	velocity,	again	in	a	state	where	only	the	spring	force	can	slowly	pull	
it	out	of	this	sticky	environment	and	what	follows	is	again	a	first	slow	approach	in	the	direction	
of	the	negative	resistance	zone	in	the	middle,	to	get	boosted	again	during	the	next	the	zero	
crossing	etc.	The	same	process	is	repeated	in	the	opposite	direction,	and	so	on.	Note,	that	
any	extra	velocity	gained	along	the	way	will	not	help	to	make	the	process	repeat	faster,	as	
more	velocity	implies	a	deeper	launching	into	very	sticky	surroundings.	
	
Interpretation	of	the	μ-parameter	
The	μ-control	parameter	 scales	 the	 resistance	curve.	The	effect	of	 increasing	μ	 is	 a	 faster	
acceleration/deceleration	within	 the	 cyclic	 process:	 with	 faster	 transients	 the	 sound	 gets	
sharper.	 The	 higher	 velocities	 shorten	 the	 zero-crossing	 time,	 and	 thus	 could	 lead	 to	 an	
increase	 in	 pitch.	 Contrary,	 the	 time	 spend	 due	 to	 effective	 launching	 in	 sticky	 regions	
increases,	which	again	lengthens	the	periods	and	thus	reduces	the	pitch.	How	this	effect	will	
balance	out	on	the	effective	period	duration	will	also	depend	on	other	variables	and	system	
dependencies,	which	in	practice	makes	it	hard	to	predict	or	generalize	how	this	μ	control	may	
affect	the	observed	pitch	of	the	oscillator.		
For	instance,	the	intermediate	speeding	up	due	to	the	high	μ,	increases	the	velocity	values,	
and	thus	the	amplitudes	of	the	voltages	 in	the	BP	output	that	represent	this	velocity,	that	
thus	should	increase	too.	However,	the	electrical	circuit	is	designed	with	an	automatic	gain	
control.	Thus,	the	amplitude	of	this	BP	signal	no	longer	shadows	the	amplitude	of	the	physical	
velocity,	but	its	frequency	content	will	still	represent	it.		
	

Use	and	abuse	of	the	vdP	circuit.	
	
Generating	bursts	of	pulses	
The	physical	interpretation	of	the	oscillating	mechanism	given	above,	can	help	to	understand	
how	to	exploit	 the	 relaxation	mechanism	and	put	 the	vdP-circuit	 in	a	burst-like	oscillating	
behaviour.	To	reach	this	state:		

(1)	The	resonance	frequency	knob	‘f’	[or	the	control	voltage	for	f(cv)]	needs	to	be	
brought	down	its	lowest	value.	You	can	interpret	this	control	parameter	action	as	a	
weakening	of	the	internally	modelled	spring.	The	less	stiff	a	spring,	the	less	force	there	
will	be	to	pull	the	mass	back	to	its	equilibrium	position,	and	the	lower	the	frequency	at	
which	the	mass	oscillates	due	to	spring	forces.	
(2)	Set	the	μ-parameter	[or	the	control	voltage	for	μ(cv)]	to	a	high	value.	The	μ-
parameter	scales	the	range	of	the	resistance	curve,	which	means	faster	
accelerations/decelerations	within	the	cyclic	process.		
(3)	Add	some	noise	to	the	external	force	input.	

	



	

	
Figure	6.	Displacement	and	velocity	time	signals	for	μ=60	&	negligible	spring	stiffness.	Some	
noise	is	added	to	the	force	input	to	randomly	dislocate	the	mass	from	its	docking	position.		
	
With	a	small	displacement	from	the	equilibrium	position	by	some	external	noise	signal	at	the	
force	input,	there	will	not	be	that	much	counter	force	by	the	weak	spring	pulling	the	mass	
back	to	the	equilibrium	position.	However,	the	little	bit	of	velocity	gained	at	the	disruption,	
will	 due	 to	 the	 high	 negative	 (anti-)resistance	 around	 zero	 displacement,	 immediately	
produce	a	lot	of	force	in	the	direction	the	mass	is	going.	The	mass	will	accelerate	rapidly	in	
the	 direction	 it	 was	 accidentally	 going.	 Once	 above	 displacement	 amplitude	 1,	 a	 rapid	
deceleration	starts	when	the	mass	lands	in	very	sticky	environment	at	one	of	the	extremes.	
The	spring	will	be	able	to	slowly	pull	the	mass	out	of	this	environment	and	the	vdP-circuit	
could	start	to	get	in	a	continuous	state	of	self-oscillation.	However,	the	continuous	noise	that	
is	been	added	to	the	force	input,	will	have	a	curious	effect	when	the	mass	crosses	amplitude	
+/-	1	with	a	low	velocity.	This	is	the	point	where	the	resistance	effect	changes	its	polarity	from	
+	to	-.	Although	the	mass	could	shorty	enter	in	the	negative	(anti-resisting)	range,	the	random	
sign	changes	of	the	external	noise	force	may	still	be	enough	to	flip	the	direction	of	the	velocity	
and	thus	make	the	mass	accelerate	back	up	again	to	the	amplitude	+/-	1	line.	In	practice,	this	
little	noise	added	increases	the	chance	to	get	stuck	at	either	the	+1	or	-1	amplitude	value	(see	
Figure	6).	It	could	happen	that	a	sudden	higher	spike	within	the	noise	in	the	direction	of	the	
zero-crossing	will	be	just	enough	to	get	the	mass	accelerate	on	itself	and	jump	to	the	other	
side.	Once	gaining	speed	and	thus	anti-resisting	force,	the	external	noise	spikes	forcing	in	the	
opposite	direction	will	 lose	 their	effect.	Moreover,	when	 the	system	makes	 this	 randomly	
triggered	relaxation	jump	to	the	other	side,	there	can	be	so	much	energy	gained	along	the	
way,	 that	 on	 the	 way	 back	 from	 the	 sticky	 environment,	 while	 moving	 in	 the	 direction	
amplitude	+/-1,	there	is	still	enough	kinetic	energy	left	to	temporary	overrule	the	noise	that	
could	again	reflect	the	mass	in	the	opposite	direction	at	the	+1/-1	line.	As	a	result,	there	will	
be	burst	of	periodic	vdP-oscillations,	that	could	by	accident	be	stopped	when	mass	is	around	
amplitude	+1	or	-1.	
With	 too	 little	disrupting	noise,	 the	circuit	will	go	on	oscillating	uninterruptedly.	With	 just	
enough	noise	amplitude,	the	chance	that	the	mass	will	be	caught	in	rapid	random	oscillations	
around	the	+/-1	displacement	points	will	increase.	With	even	more	noise,	such	a	catch	gets	
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even	more	secured.	With	again	more	noise,	the	chance	to	leave	the	zone	increases	again.	So,	
there	are	many	variables	 to	explore	here,	as	what	happens	when	you	give	a	 little	voltage	
offset	to	the	noise.	Have	fun	with	the	vdP!	


