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MIDI

INTRODUCTION TO MIDI
Simply stated, Musical Instrument Digital Interface (MIDI) is a digital communications language and 
compatible specification that allows multiple hardware and software electronic instruments, perform-
ance controllers, computers, and other related devices to communicate with each other over a con-
nected network. MIDI is used to translate performance- or control-related events (such as playing a 
keyboard, selecting a patch number, varying a modulation wheel, triggering a staged visual effect, etc.) 
into equivalent digital messages and then transmit these messages to other MIDI devices where they 
can be used to control sound generators and other performance parameters. The beauty of MIDI is that 
its data can be easily recorded into a hardware device or software program (known as a sequencer), 
where it can be edited and transmitted to electronic instruments or other devices to create music or 
control any number of parameters.

In artistic terms, this digital language is an important medium that lets artists express themselves with a 
degree of flexibility and control that wasn’t possible at an individual level beforehand. Through the use 
of this performance language, an electronic musician can create and develop a song or composition in 
a practical, flexible, affordable, and fun production environment.

The word interface refers to the actual data communications link and software/hardware systems in a 
connected MIDI network. Through MIDI, it’s possible for all of the electronic instruments and devices 
within a network to communicate real-time performance and control-related MIDI data messages 
throughout a system to multiple instruments and devices via MIDI, USB, or FireWire networked data 
lines. Given that MIDI data can simultaneously transmit performance and control messages over mul-
tiple channels (usually in groupings of 16 channels per port), an electronic musician can record, over-
dub, mix, and play back their performances in a building-block fashion that resembles the multitrack 
recording process. In fact, the true power of MIDI lies in its ability to edit, control, alter and automate 
parts of a composition after the original performance has been recorded, allowing performance param-
eters to be easily altered in ways that are unique to the medium.

What MIDI isn’t
For starters, let’s dispel one of MIDI’s greatest myths: MIDI doesn’t communicate audio—it cannot 
create sounds! It is a digital language protocol that can only be used to trigger and/or control a device 
(which, in turn generates, reproduces, or controls the sound). Thus, the MIDI data and the audio rout-
ing paths are kept entirely separate from each another, Figure 16.1. Even if they digitally share the same 
transmission cable (such as through USB or FireWire), the actual data paths and formats are distinct.

In short, MIDI’s control-related language can be thought of as the dots on a player-piano roll—when 
we put the paper roll up to our ears, we hear nothing. However, when the cutout dots pass over 
the sensors on a player piano, the instrument itself begins to make beautiful music. The analogy is 
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pretty much the same with MIDI. A MIDI file or data stream is simply a set of instructions that pass 
through wires in a serial fashion, but when an electronic instrument interprets the data, we then hear 
sound.

As a performance-based control language, MIDI complements modern music production, by allow-
ing a performance track to be edited, layered, altered, spindled, mutilated, and improved with relative 
ease under completely automated computer control and after the fact, during post-production. If you 
played a bad note, fix it. If you want to change the key or tempo of a piece, change it. If you want to 
change the expressive volume of a phrase in a song, just do it! Even its sonic character (timbre) can 
be changed! These capabilities merely hint at the power of this medium that widely affects the project 
studio, professional studio, audio or visual and film, live performance, multimedia, and even your cell 
phone!

THE MIDI MESSAGE
From its inception in the early 80s, the MIDI 1.0 spec (which is still the adopted version to this day) 
must be strictly adhered to by those who design and manufacture MIDI-equipped instruments and 
devices. As such, users needn’t worry about whether the MIDI Out of one device will be understood by 
the MIDI In of a device that’s made by another manufacturer (at least the basic performance level). We 
need only consider the day-to-day dealings that go hand-in-hand with using electronic instruments, 
without having to be concerned with data compatibility between devices.

MIDI messages are communicated through a standard MIDI line in a serial fashion at a speed of 
31,250 bits/s. These messages are made up of groups of 8-bit words (known as bytes), which are used 
to convey instructions to one or all MIDI devices within a system. Only two types of bytes are defined 
by the MIDI specification: the status byte and the data byte.

Computer
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MIDI module

MIDI module

Audio interface with MIDI I/O

Powered loudspeakers

Audio mixer

Instruments
Microphones

FIGURE 16.1 
Example of a typical MIDI system with the MIDI network connections being shown in solid lines and audio connections shown using 
dotted lines.
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A status byte is used to identify what type of MIDI function is to be performed by a device or program. 
It’s also used to encode channel data (allowing the instruction to be received by a device that’s set to 
respond to a specific channel). A data byte is used to associate a value to the event that’s given by the 
accompanying status byte.

The most significant bit (MSB), the leftmost binary bit within a digital word within a MIDI byte, is 
used solely to identify the data’s particular function. The MSB of a status byte is always 1, while the 
MSB of a data byte is always 0. For example, a 3 byte MIDI note-on message (which is used to signal 
the beginning of a MIDI note) in binary form might read as shown in Table 16.1. Thus, a 3 byte note-
on message of (10010100) (01000000) (01011001) will transmit instructions that would be read as 
“Transmitting a note-on message over MIDI channel #5, using keynote #64, with an attack velocity 
(volume level of a note) of 89.”

MIDI channels
Just as a public speaker might single out and communicate a message to one individual in a crowd, 
MIDI messages can be directed to communicate information to a specific device or series of devices 
within a MIDI system. This is done by imbedding a channel-related nibble (4 bits) within the status 
byte, allowing data to be conveyed to any of 16 channels over a single MIDI data cable line, Figure 
16.2. This makes it possible for performance or control information to be communicated to a specific 
device or a sound generator within a device that’s assigned to a particular channel.

Whenever a MIDI device, sound generator, or program function is instructed to respond to a specific 
channel number, it will only respond to messages that are transmitted on that channel (i.e., it ignores 

1. mondo pad
2. taiko drums
3. piano
4. synth solo
5. MIDI guitar
6. strings
7. strings hi
8. strings lo
9. perc

10. satas claws
11. hells bells
12. horns
13. big bass
14. celeste
15. b3
16. blockhead

FIGURE 16.2 
Up to 16 channels can be transmitted through a single MIDI cable.

Status and Data Byte Interpretation.

Status Byte Data Byte 1 Data Byte 2

Description Status/Channel # Note # Attack Velocity

Binary Data (1001.0100) (0100.0000) (0101.1001)

Numeric Value (Note On/Ch #5) (64) (89)

0000  CH#1 0100  CH#5 1000  CH#9 1100  CH#13

0001  CH#2 0101  CH#6 1001  CH#10 1101  CH#14

0010  CH#3 0110  CH#7 1010  CH#11 1110  CH#15

0011  CH#4 0111  CH#8 1011  CH#12 1111  CH#16

Table 16.1Table 16.1
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channel messages that are transmitted on any other channel). For example, let’s assume that we’re 
going to create a short song using a synthesizer that has a built-in sequencer (a device or program that’s 
capable of recording, editing, and playing back MIDI data) and two other synths, Figure 16.3.

1. We could start off by recording a drum track into the master synth using channel 10 (many
synths are pre-assigned to output drum/percussion sounds on this channel).

2. Once recorded, the sequence will then transmit the notes and data over channel 10, allowing
the synth’s percussion section to be heard.

3. Next, we could set a synth module to channel 3, and instruct the master synth to transmit on
the same channel (since the synth module is set to respond to data on channel 3, its generators
will sound whenever the master keyboard is played). We can now begin recording a melody line
into the sequencer’s next track.

4. Playing back the sequence will then transmit data to both the master synth (percussion section)
and the module (melody line) over their respective channels. At this point, our song is begin-
ning to take shape.

5. Now, we can set a sampler (or other instrument type) to respond to channel 5, and instruct the
master synth to transmit on the same channel, allowing us to further embellish the song.

6. Now that the song’s complete, the sequencer can then play the musical parts to the synths on
their respective MIDI channels, all in an environment that allows us to have complete control of
volume, edit, and a wide range of functions over each instrument. In short, we’ve created a true
multichannel working environment.

It goes without saying that the above example is just but one of the infinite setup and channel possibil-
ities that can be encountered in a production environment. It’s often true, however, that even the most 
complex MIDI and production rooms will have a system, a basic channel and overall layout that makes 
the day-to-day operation of making music easier. This layout and the basic decisions in your own room 
are, of course, up to you. Streamlining a system to work both efficiently and easily will come over time 
with experience and practice.

MIDI modes
Electronic instruments often vary in the number of sounds and/or notes that can be simultaneously 
produced by their internal sound-generating circuitry. For example, certain instruments can only pro-
duce one note at a single time (known as a monophonic instrument), while others can generate 16, 32, 
and even 64 notes at once (these are known as polyphonic instruments). The latter type is easily capable 
of playing chords and/or more than one musical line on a single instrument.

In addition, some instruments are only capable of producing a single generated sound patch (often 
referred to as a voice) at any one time. Its generating circuitry could be polyphonic, allowing the player 
to lay down chords and bass/melody lines), but it can only produce these notes using a single char-
acteristic sound at any one time (e.g., an electric piano, or a synth bass, or a string patch). However, 
the vast majority of newer synths differ from this in that they’re multitimbral in nature, meaning that 
they can generate numerous sound patches at any one time (e.g., an electric piano, and a synth bass, 
and a string patch). That is, it’s common to run across electronic instruments that can simultaneously 

In Out Thru

Synth module (Ch #3)

In Out Thru

In Out Thru

Master controller (Ch#10)— 
percussion

Sampler module (Ch #5)

FIGURE 16.3 
MIDI setup showing a set of MIDI channel assignments.
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generate a number of voices, each offering its own control over parameters (such as volume, panning, 
modulation, etc.) and—best of all—it’s also common for different sounds to be assigned to their own 
MIDI channels, allowing multiple patches to be internally mixed within the device (often top a stereo 
output bus), or to independent outputs.

As a result of these differences between instruments and devices, a defined set of guidelines (known as 
MIDI reception modes) has been specified that allows a MIDI instrument to transmit or respond to MIDI 
channel messages in several ways. For example, one instrument might be programmed to respond to 
all 16 MIDI channels at one time, while another might be polyphonic in nature, with each voice being 
programmed to respond to only a single MIDI channel.

POLY/MONO
An instrument or device can be set to respond to MIDI data in either the poly mode or the mono 
mode. Stated simply, an instrument that’s set to respond to MIDI data polyphonically will be able to 
play more than one note at a time. Conversely, an instrument that’s set to respond to MIDI data mono-
phonically will only be able to play a single note at any one time.

OMNI ON/OFF
Omni on/off refers to how a MIDI instrument will respond to MIDI messages at its input. When Omni 
is turned on, the MIDI device will respond to all channel messages that are being received regardless of 
its MIDI channel assignment. When Omni is turned off, the device will only respond to a single MIDI 
channel or set of assigned channels (in the case of a multitimbral instrument).

The following list and figures explain the four modes that are supported by the MIDI spec in more detail.

 Mode 1—Omni On/Poly: In this mode, an instrument will respond to data that’s being received 
on any MIDI channel, and then redirect this data to the instrument’s base channel, Figure 16.2a. 
In essence, the device will play back everything that’s presented at its input in a polyphonic fash-
ion... regardless of the incoming channel designations. As you might guess, this mode is rarely 
used.

 Mode 2—Omni On/Mono: As in Mode 1, an instrument will respond to all data that’s being 
received at its input, without regard to channel designations. However, this device will only be 
able to play one note at a time, Figure 16.2b. Mode 2 is used even more rarely than Mode 1, as 
the device can’t discriminate channel designations and can only play one note at a time.

 Mode 3—Omni Off/Poly: In this mode, an instrument will only respond to data that matches 
its assigned base channel in a polyphonic fashion, Figure 16.2c. Data that is assigned to any 
other channel will be ignored. This mode is by far the most commonly used because it allows 
the voices within a multitimbral instrument to be individually controlled by messages that are 
being received on different MIDI channels. For example, each of the 16 channels in a MIDI line 
could be used to independently play each of the parts in a 16-voice, multitimbral synth.

 Mode 4—Omni Off/Mono: As with Mode 3, an instrument will be able to respond to perform-
ance data that’s transmitted over a single dedicated channel; however, each voice will only be 
able to generate one MIDI note at a time, Figure 16.2d. A practical example of this mode is often 
used in MIDI guitar systems, where MIDI data is monophonically transmitted over six consecu-
tive channels (one channel/voice per string).

Channel messages
Channel-voice messages are used to transmit real-time performance data throughout a connected MIDI 
system. They’re generated whenever a MIDI instrument’s controller is played, selected, or varied by the per-
former. Examples of such control changes could be the playing of a keyboard, pressing of program selec-
tion buttons, or movement of modulation or pitch wheels. Each channel-voice message contains a MIDI 
channel number within its status byte, meaning that only devices that are assigned to the same channel 
number will respond to these commands. There are seven channel-voice message types: note-on, note-off, 
polyphonic-key pressure, channel pressure, program change, pitch-bend change and control change.

Note-On Messages. A note-on message is used to indicate the beginning of a MIDI note. It is generated 
each time a note is triggered on a keyboard, controller, or other MIDI instrument (i.e., by pressing a 
key, hitting a drum pad, or by playing a sequence).
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A note-on message consists of 3 bytes of information, Figure 16.4: Note-on status/MIDI channel 
number, MIDI pitch number and attack velocity value.

The first byte in the message specifies a note-on event and a MIDI channel (1–16). The second byte is 
used to specify which of the possible 128 notes (numbered 0–127) will be sounded by an instrument. 
In general, MIDI note number 60 is assigned to the middle C key of an equally tempered keyboard, 
while notes 21 to 108 correspond to the 88 keys of an extended keyboard controller. The final byte is 
used to indicate the velocity or speed at which the key was pressed (over a value range that varies from 
0 to 127). Velocity is used to denote the loudness of a sounding note, which increases in volume with 
higher velocity values (although velocity can also be programmed to work in conjunction with other 
parameters such as expression, control over timbre, sample voice assignments, etc).

Note-Off Messages. A note-off message is used as a command to stop playing a specific MIDI note. 
Each note-on message will continue to play until a corresponding note-off message for that note has 
been received. In this way, the bare basics of a musical composition can be encoded as a series of MIDI 
note-on and note-off events. It should also be pointed out that a note-off message wouldn’t cut off a 
sound; it’ll merely stop playing it. If the patch being played has a release (or final decay) slope, it will 
begin this stage upon receiving the message.

A note-off message consists of three bytes of information, Figure 16.5: Note-off status/MIDI channel 
number, MIDI pitch number and attack velocity value.

In contrast to the dynamics of attack velocity, the release velocity value (0–127) indicates the velocity 
or speed at which the key was released. A low value indicates that the key was released very slowly, 
whereas a high value shows that the key was released quickly. Although not all instruments generate  
or respond to MIDI’s release velocity feature, instruments that are capable of responding to these values 
can be programmed to vary a note’s speed of decay, often reducing the signal’s decay time as the release 
velocity value is increased.

A note-on message that contains an attack velocity of 0 (zero) is generally equivalent to the transmis-
sion of a note-off message. This common implementation tells the device to silence a currently sound-
ing note by playing it with a velocity (volume) level of 0.

All Notes Off. On the odd occasion (often when you least expect it), a MIDI note can get stuck! 
This can happen when data drops out or a cable gets disconnected, creating a situation where a 
note receives a note-on message, but not a note-off message, resulting in a note that continues to 

Status/Ch#
(1–16)

Note #
(0–127)

Attack velocity
(0–127)

FIGURE 16.4 
Byte structure of a MIDI note-on message.

Status/Ch#
(1–16)

Note #
(0–127)

Attack velocity
(0–127)

FIGURE 16.5 
Byte structure of a MIDI note-off message.
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plaaaaaaaaaaayyyyyyyyyy! Since you’re often too annoyed or under pressure to take the time to track 
down which note is the offending sucka… it’s generally far easier to transmit an all notes off message 
that silences everything on all channels and ports. If it exists, this can easily be done by pressing a Panic 
Button that’s built into the sequencer or hardware MIDI interface.

Pressure (Aftertouch) Messages. Pressure-related messages (often referred to as aftertouch) occur after 
you’ve pressed a key and then decide to press down harder to gain a particular effect. For devices that 
can respond to (and therefore generally transmit) these messages, aftertouch can often be assigned 
to such parameters as vibrato, loudness, filter cut-off, and pitch. Two types of pressure messages are 
defined by the MIDI spec:

 Channel-pressure.
 Polyphonic-pey pressure.

Channel-pressure messages are commonly transmitted by instruments that only respond to a single 
overall pressure, regardless of the number of keys that are being played at any one time, Figure 16.6. 
For example, if six notes are played on a keyboard and additional aftertouch pressure is applied to just 
one key, the assigned parameter would be applied to all six notes.

A channel-pressure message consists of 3 bytes of information, Figure 16.6: Channel-pressure status/
MIDI channel number, MIDI note number, and pressure value.

Polyphonic-key pressure messages respond to pressure changes that are applied to the individual keys 
of a keyboard. That’s to say that a suitably equipped instrument can transmit or respond to individual 
pressure messages for each key that’s depressed.

How a device responds to these messages will often vary from manufacturer to manufacturer (or 
can be assigned by the user). However, pressure values are commonly assigned to such performance 
parameters as vibrato, loudness, timbre, and pitch. Although controllers that are capable of producing 
polyphonic pressure are generally more expensive, it’s not uncommon for an instrument to respond to 
these messages.

A polyphonic-key pressure message consists of 3 bytes of information, Figure 16.7: Polyphonic-key 
pressure status/MIDI channel number, MIDI note number, and pressure value.

Program-Change Messages. Program-change messages are used to change a MIDI instrument or 
device’s active program or preset number. A preset is a user- or factory-defined number that actively 

Status/Ch#
(1–16)

Note #
(0–127)

Pressure value
(0–127)

FIGURE 16.6 
Byte structure of a MIDI channel-pressure message.

Status/Ch#
(1–16)

Note #
(0–127)

Pressure value
(0–127)

FIGURE 16.7 
Byte structure of a MIDI polyphonic-key pressure message.
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selects a specific sound patch or system setup. Using this extremely handy message, up to 128 presets 
can be remotely selected from another device or controller. For example:

 A program-change message can be transmitted from a remote keyboard or controller to an 
instrument, allowing sound patches to be remotely switched, Figures 16.8 and 16.9.

 Program-change messages could be programmed at the beginning of a sequence, so as to instruct 
the various instruments or voice generators to set to the correct sound patch before playing.

 It could be used to alter patches on an effects device, either in the studio or on stage. The list goes 
on.

A program-change message, Figure 16.8, consists of 2 bytes of information: program-change status/ 
MIDI channel number and program ID number.

Pitch-bend Messages. Pitch-bend sensitivity refers to the response sensitivity (in semitones) of a pitch-
bend wheel or other pitch-bend controlle, which, as you’d expect, is used to bend the pitch of a note 
upward or downward. Since the ear can be extremely sensitive to changes in pitch, this control param-
eter is encoded using 2 data bytes, yielding a total of 16,384 steps. Since this parameter is most com-
monly affected by varying a pitch wheel, Figure 16.9, the control values range from 8,192 to 8,191, 
with 0 being the instrument’s or part’s unaltered pitch.

Control-Change Messages. Control-change messages are used to transmit information to a device 
(either internally or through a MIDI line/network) that relates to real-time control over its performance 
parameters.

Three types of control-change messages can be transmitted via MIDI:

1. Continuous controllers: Controllers that relay a full range of variable control settings (often
ranging in value between 0–127 although, in certain cases, two controller messages can be com-
bined in tandem to achieve a greater resolution).

2. Switch controllers: Controllers that have either an off or an on state with no intermediate
settings.

Status/Ch#
(1–16)

Program ID#
(0–127)

FIGURE 16.8 
Byte structure of a MIDI program-change message.

FIGURE 16.9 
Byte structure of a pitch-bend message.

–8,192
(lowered pitch)

Status/Ch#      Pitch bend LSB       Pitch bend MSB

0
+8, 191
(raised pitch)
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3. Channel-mode message controllers: The final set of control change messages range between
controller numbers 120 through 127, and are used to set the note sounding status, instrument
reset, local control on/off, all notes off, and MIDI mode status of a device or instrument.

A single control-change message or a stream of such messages is transmitted whenever controllers 
(such as foot switches, foot pedals, pitch-bend wheels, modulation wheels, breath controllers, etc.) 
are varied in real-time. Newer controllers and software editors often offer up a wide range of switched 
and variable controllers, allowing for extensive, user-programmable control over any number of device, 
voice, and mixing parameters in real-time, Figure 16.10.

A control-change message, Figure 16.11, consists of 3 bytes of information: control-change status/MIDI 
channel number, controller ID number, and corresponding controller value.

As you can see, the second byte of the control-change message is used to denote the controller ID 
number. This all-important value is used to specify which of the device’s program or performance 
parameters are to be addressed.

Table 16.2 details the general categories and conventions for assigning controller numbers to an associ-
ated parameter, as specified by the 1995 update of the MMA (MIDI Manufacturers Association, www.
midi.org). This is definitely an important section to earmark, as these numbers will be an important 
guide towards knowing and/or finding the right ID number that can help you on your path towards 
finding that perfect variable for making it sound right.

The third byte of the control-change message is used to denote the controller’s actual data value. This 
value is used to specify the position, depth, or level of a parameter. Here are a few examples as to how 
these values can be implemented to vary control and mix parameters.

In certain cases, greater resolutions than can be given by a single 7-bit course message (128 steps) 
might be available to increase a controller’s resolution. This is simply accomplished by adding an  
additional fine controller value message to the data stream, resulting in an overall resolution that 
yields an overall total of 16,384 discrete steps!

System messages
System Messages. As the name implies, system messages are globally transmitted to every MIDI device 
in the MIDI chain. This is accomplished because MIDI channel numbers aren’t addressed within the 
byte structure of a system message. Thus, any device will respond to these messages, regardless of its 

FIGURE 16.10 
M-audio controller. (Courtesy of M-Audio, a division of Avid Technology, Inc., www.m-audio.com.)

MIDI controllers

Pitch-bend and modulation wheels

FIGURE 16.11 
Byte structure of a control-change message.

0

Status/Ch#
(1–16)

Controller ID#
(0–127)

Controller value
(0–127)
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Listing of Controller ID Numbers, Outlining Both the Defined Format and 
Convention and Controller Assignments.

Control Number Parameter

14 Bit Controllers Coarse/MSB (most significant bit)

0 Bank Select 0–127 MSB

1 Modulation Wheel or Lever 0–127 MSB

2 Breath Controller 0–127 MSB

3 Undefined 0–127 MSB

4 Foot Controller 0–127 MSB

5 Portamento Time 0–127 MSB

6 Data Entry MSB 0–127 MSB

7 Channel Volume (formerly Main Volume) 0–127 MSB

8 Balance 0–127 MSB

9 Undefined 0–127 MSB

10 Pan 0–127 MSB

11 Expression Controller 0–127 MSB

12 Effect Control 1 0–127 MSB

13 Effect Control 2 0–127 MSB

14 Undefined 0–127 MSB

15 Undefined 0–127 MSB

16–19 General Purpose Controllers 1–4 0–127 MSB

20–31 Undefined 0–127 MSB

14-bit Controllers Fine/LSB (least significant bit)

32 LSB for Control 0 (Bank Select) 0–127 LSB

33 LSB for Control 1 (Modulation Wheel or Lever) 0–127 LSB

34 LSB for Control 2 (Breath Controller) 0–127 LSB

35 LSB for Control 3 (Undefined) 0–127 LSB

36 LSB for Control 4 (Foot Controller) 0–127 LSB

37 LSB for Control 5 (Portamento Time) 0–127 LSB

38 LSB for Control 6 (Data Entry) 0–127 LSB

39 LSB for Control 7 (Channel Volume, formerly Main Volume) 0–127 LSB

40 LSB for Control 8 (Balance) 0–127 LSB

41 LSB for Control 9 (Undefined) 0–127 LSB

42 LSB for Control 10 (Pan) 0–127 LSB

43 LSB for Control 11 (Expression Controller) 0–127 LSB

44 LSB for Control 12 (Effect control 1) 0–127 LSB

45 LSB for Control 13 (Effect control 2) 0–127 LSB

46–47 LSB for Control 14–15 (Undefined) 0–127 LSB

48–51 LSB for Control 16–19 (General Purpose Controllers 1–4) 0–127 LSB

52–63 LSB for Control 20–31 (Undefined) 0–127 LSB

Table 16.2Table 16.2
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7-bit Controllers

64 Damper Pedal On/Off (Sustain) 63 off, 64 on

65 Portamento On/Off 63 off, 64 on

66 Sustenuto On/Off 63 off, 64 on

67 Soft Pedal On/Off 63 off, 64 on

68 Legato Footswitch 63 Normal, 64 Legato

69 Hold 2 63 off, 64 on

70 Sound Controller 1 (Default: Sound Variation) 0–127 LSB

71 Sound Controller 2 (Default: Timbre/Harmonic Intens.) 0–127 LSB

72 Sound Controller 3 (Default: Release Time) 0–127 LSB

73 Sound Controller 4 (Default: Attack Time) 0–127 LSB

74 Sound Controller 5 (Default: Brightness) 0–127 LSB

75 Sound Controller 6 (Default: Decay Time—see MMA RP-021) 0–127 LSB

76 Sound Controller 7 (Default: Vibrato Rate—see MMA RP-021) 0–127 LSB

77 Sound Controller 8 (Default: Vibrato Depth—see MMA RP-021) 0–127 LSB

78 Sound Controller 9 (Default: Vibrato Delay—see MMA RP-021) 0–127 LSB

79 Sound Controller 10 (Default undefined—see MMA RP-021) 0–127 LSB

80–83 General Purpose Controller 5–8 0–127 LSB

84 Portamento Control 0–127 LSB

85–90 Undefined

91 Effects 1 Depth (Default: Reverb Send Level) 0–127 LSB

92 Effects 2 Depth (Default: tremolo Level) 0–127 LSB

93 Effects 3 Depth (Default: Chorus Send Level) 0–127 LSB

94 Effects 4 Depth (Default: Celeste [Detune] Depth) 0–127 LSB

95 Effects 5 Depth (Default: Phaser Depth) 0–127 LSB

Parameter Value Controllers

96 Data Increment (Data Entry 1)

97 Data Decrement (Data Entry -1)

98 Non-Registered Parameter Number (NRPN)—LSB 0–127 LSB

99 Non-Registered Parameter Number (NRPN)—MSB 0–127 MSB

100 Registered Parameter Number (RPN)–LSB* 0–127 LSB

101 Registered Parameter Number (RPN)—MSB* 0–127 MSB

102–119 Undefined

Reserved for Channel Mode Messages

120 All Sound Off 0

121 Reset All Controllers

122 Local Control On/Off 0 off, 127 on

123 All Notes Off

124 Omni Mode Off (  all notes off)

125 Omni Mode On (  all notes off)

126 Poly Mode On/Off (  all notes off)

127 Poly Mode On (  mono off all notes off)
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MIDI channel assignment. The three system message types are system-common messages, system real-
time messages, and system-exclusive messages.

System-Common Messages. System-common messages are used to transmit MIDI time code, song 
position pointer, song select, tune request, and end-of-exclusive data messages throughout the MIDI 
system or 16 channels of a specified MIDI port.

MTC Quarter-Frame Messages. MIDI time code (MTC) provides a cost-effective and easily imple-
mented way to translate SMPTE (a standardized synchronization time code) into an equivalent code 
that conforms to the MIDI 1.0 spec. It allows time-based codes and commands to be distributed 
throughout the MIDI chain in a cheap, stable, and easy-to-implement way. MTC quarter-frame messages 
are transmitted and recognized by MIDI devices that can understand and execute MTC commands.

A grouping of eight quarter frames is used to denote a complete time code address (in hours, minutes, 
seconds, and frames), allowing the SMPTE address to be updated every two frames. Each quarter-frame 
message contains 2 bytes. The first is a quarter-frame common header, while the second byte contains 
a 4-bit nibble that represents the message number (0–7). A final nibble is used to encode the time field 
(in hours, minutes, seconds, or frames).

Song Position Pointer Messages. As with MIDI time code, song position pointer (SPP) lets you syn-
chronize a sequencer, tape recorder, or drum machine to an external source from any measure position 
within a song. The SPP message is used to reference a location point in a MIDI sequence (in measures) 
to a matching location within an external device. This message provides a timing reference that incre-
ments once for every six MIDI clock messages (with respect to the beginning of a composition).

Unlike MTC (which provides the system with a universal address location point), SPP’s timing refer-
ence can change with tempo variations, often requiring that a special tempo map be calculated in order 
to maintain synchronization. Because of this fact, SPP is used far less often than MIDI time code.

Song Select Messages. Song select messages are used to request a specific song from a drum machine 
or sequencer (as identified by its song ID number). Once selected, the song will thereafter respond to 
MIDI start, stop, and continue messages.

Tune Request Messages. The tune request message is used to request that a MIDI instrument initiate 
its internal tuning routine (if so equipped).

End-of-Exclusive Messages. The transmission of an end-of-exclusive (EOX) message is used to indicate 
the end of a system-exclusive message. In-depth coverage of system-exclusive messages will be dis-
cussed later in this chapter.

System Real-Time Messages. Single-byte system real-time messages provide the all-important timing 
element required to synchronize all of the MIDI devices in a connected system. To avoid timing delays, 
the MIDI specification allows system real-time messages to be inserted at any point in the data stream, 
even between other MIDI messages.

Timing-Clock Messages. The MIDI timing-clock message is transmitted within the MIDI data stream at 
various resolution rates. It is used to synchronize the internal timing clocks of each MIDI device within 
the system and is transmitted in both the start and stop modes at the currently defined tempo rate.

In the early days of MIDI, these rates (which are measured in pulses per quarter note, ppq) ranged 
from 24 to 128 ppq. However, continued advances in technology have brought these rates up to 240, 
480, or even 960 ppq.

Start Messages. Upon receipt of a timing-clock message, the MIDI start command instructs all con-
nected MIDI devices to begin playing from their internal sequences initial start point. Should a pro-
gram be in midsequence, the start command will reposition the sequence back to its beginning, at 
which point it will begin to play.

Stop Messages. Upon receipt of a MIDI stop command, all devices within the system will stop playing 
at their current position point.

Continue Messages. After receiving a MIDI stop command, a MIDI continue message will instruct all 
connected devices to resume playing their internal sequences from the precise point at which they were 
stopped.
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Active-Sensing Messages. When in the stop mode, an optional active-sensing message can be transmit-
ted throughout the MIDI data stream every 300 milliseconds. This instructs devices that can recognize 
this message that they’re still connected to an active MIDI data stream.

System-Reset Messages. A system-reset message is manually transmitted in order to reset a MIDI device 
or instrument back to its initial power-up default settings (commonly mode 1, local control on, and all 
notes off).

System-Exclusive Messages. The system-exclusive (SysEx) message allows MIDI manufacturers, pro-
grammers and designers to communicate customized MIDI messages between MIDI devices. It’s the 
purpose of these messages to give manufacturers, programmers, and designers the freedom to com-
municate any device-specific data of an unrestricted length, as they see fit. In practice, SysEx data is 
commonly used to communicate real-time controller information (i.e., a remote controller surface will 
commonly use SysEx to communicate data to/from a MIDI-capable hard- or software device. SysEx can 
also be used transmit and receive device-specific program, patch parameter and sample data from one 
instrument or device to another. For example, SysEx can be used to transmit patch and overall setup 
data between identical make and (most-often) model of synthesizer. Let’s say that you have a Brand X 
Model Z synthesizer and it turns out that you have a buddy across town who also has a Brand X Model 
Z. That’s cool, except your buddy’s synth has a completely different set of sound patches that was 
loaded into their instrument and you want them! SysEx to the rescue! All you need to do is go over and 
transfer your buddy’s patch data into your synth, or into a MIDI sequencer as a SysEx data dump. In 
order to make life easier, make sure you take your instruction manual along (just in case you run into a 
snag), and follow these simple guidelines. I’ll caution you that you’re taking on these tasks at your own 
risk. Take your time; be patient and be careful during these procedures:

1. Back up your present patch data! This can be done by transmitting a SysEx dump of your syn-
thesizer’s entire patch and setup data to your sequencer’s SysEx dump utility, or SysEx track on
your sequencer (of course, you should get out both the device’s manual and your sequencer’s
manual and follow their SysEx dump instructions very carefully during the process). This is
so important that I’ll say it again: Back up your present patch data before attempting a SysEx
dump! If you forget and download a new SysEx dump, your previous settings could easily be
lost.

2. Save the data, according to your sequencer’s manual.
3. Check that the dump was successful by reloading it back into the device in question. Did it

reload properly? If so, your current patch data is now saved.
4. Next, connect your buddy’s device to your sequencer. Dump this data to your sequencer. Save

the new patch data (using a new and easily identifiable file name), according to your sequenc-
er’s manual and then safely back this data up.

5. Reconnect the sequencer to your synth and load the new data dump into it. Does your synth
have a bunch of new sounds? Now reload your original SysEx dump back into your device. Are
the original sounds restored?

The transmission format of a SysEx message, Figure 16.12, as defined by the MIDI standard, includes a 
SysEx status header, manufacturer’s ID number, any number of SysEx data bytes, and an EOX byte. On 
receiving a SysEx message, the identification number is read by a MIDI device to determine whether or 
not the following messages are relevant. This is easily accomplished, because a unique 1- or 3-byte ID 
number is assigned to each registered MIDI manufacturer. If this number doesn’t match the receiving 

SysEx status manufacturer’s ID
(1111 0000) (0DDD DDD)

(1111 0111)
End of Exclusive (EOX)

(undefined number of data bytes)

FIGURE 16.12 
System-exclusive data (one ID byte format).
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MIDI device, the ensuing data bytes will be ignored. Once a valid stream of SysEx data is transmitted, 
a final EOX message is sent, after which the device will again begin responding to incoming MIDI per-
formance messages. 

HARDWARE SYSTEMS WITHIN MIDI PRODUCTION
As a data transmission medium, MIDI is relatively unique in the world of sound production in  
that it’s able to pack 16 discrete channels of performance, controller, and timing information and 
transmit it in one direction, using data densities that are economically small and easy to manage. 
In this way, it’s possible for MIDI messages to be communicated from a specific source (such as a  
keyboard or MIDI sequencer) to any number of devices within a connected network over a single 
MIDI data chain. In addition, MIDI is flexible enough that multiple MIDI data lines can be used to 
interconnect devices in a wide range of possible system configurations (for example, multiple MIDI 
lines can be used to transmit data to instruments and devices over 32, 48, 128, or more discrete MIDI 
channels!)

The MIDI Cable. A MIDI cable, Figure 16.13, consists of a shielded twisted pair of conductor wires 
that has a male 5-pin DIN plug located at each of its ends. The MIDI specification currently uses only 
three of the five pins, with pins 4 and 5 being used as conductors for MIDI data, while pin 2 is used 
to connect the cable’s shield to equipment ground. Pins 1 and 3 are currently not in use, although the 
next section describes an ingenious system for power devices through these pins, using a system that’s 
known as MIDI phantom power. The cables themselves use twisted cable and metal shield groundings 
to reduce outside interference, such as radio-frequency interference (RFI) or electrostatic interference, 
both of which can serve to distort or disrupt the transmission of MIDI messages.

Rear connector view

No connection
or

phantom power
+9 to +15 V

MIDI signal

Ground

MIDI signal

No connection
or

phantom power
ground (return)

A. Connector wiring diagram

B. Standard length MIDI cable

FIGURE 16.13 
The MIDI cable.
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MIDI cables come prefabricated in lengths of 2, 6, 10, 20, and 50 feet, and can commonly be obtained 
from music stores that specialize in MIDI equipment. To reduce signal degradations and external inter-
ference that tends to occur over extended cable runs, 50 feet is the maximum length specified by the 
MIDI specification. (As an insider tip, I found that Radio Shack is also a great source for picking up  
3 and 6 feet MIDI cables at a fraction of what you’d sometimes spend at a music store).

MIDI Phantom Power. In December 1989, Craig Anderton wrote an article in Electronic Musician about 
a proposed idea for allowing a source to provide a standardized 12 Vdc power supply to instruments 
and MIDI devices directly through pins 1 and 3 of a basic MIDI cable. Although pins 1 and 3 are tech-
nically reserved for possible changes in future MIDI applications, over the years several forward-think-
ing manufacturers (and project enthusiasts) have begun to implement MIDI phantom power directly 
into their studio and on-stage systems.

Wireless MIDI. In recent times, a number of companies have begun to manufacturer wireless MIDI 
transmitters that can allow a battery-operated MIDI guitar, wind controller, etc. to be footloose and 
fancy free on-stage and in the studio. Working at distances of up to 500 feet, these battery-powered 
transmitter/receiver systems introduce very low delay latencies and can be switched over a number of 
radio channel frequencies.

MIDI Jacks. MIDI is distributed from device to device using three types of MIDI jacks: MIDI In, MIDI 
Out, and MIDI Thru, Figure 16.14. These three connectors use 5-pin DIN jacks as a way to connect 
MIDI instruments, devices, and computers into a music and/or production network system. As a side 
note, it’s nice to know that these ports (as strictly defined by MIDI 1.0 Spec.) are optically isolated to 
eliminate possible ground loops that might occur when connecting numerous devices together.

 MIDI In—The MIDI In jack receives messages from an external source and communicates this 
performance, control, and/or timing data to the device’s internal microprocessor, allowing an 
instrument to be played and/or a device to be controlled. More than one MIDI In jack can be 
designed into a system to provide for MIDI merging functions or for devices that can support 
more than 16 channels (such as a MIDI Interface). Other devices (such as a controller) might not 
have a MIDI In jack at all.

 MIDI Out—The MIDI Out jack is used to transmit MIDI performance, control messages or SysEx 
from one device to another MIDI instrument or device. More than one MIDI Out jack can be 
designed into a system, giving it the advantage of controlling and distributing data over multiple 
MIDI paths using more than just 16 channels (i.e., 16 channels  N MIDI port paths).

 MIDI Thru—The MIDI Thru jack retransmits an exact copy of the data that’s being received at 
the MIDI In jack. This process is important, because it allows data to pass directly through an 
instrument or device to the next device in the MIDI chain. Keep in mind that this jack is used 
to relay an exact copy of the MIDI In data stream and isn’t merged with data being transmitted 
from the MIDI Out jack.

 MIDI Echo—Certain MIDI devices may not include a MIDI Thru jack, at all. Certain of these 
devices, however, may give the option of switching the MIDI Out between being an actual MIDI 
Out jack and a MIDI Echo jack, Figure 16.15. As with the MIDI Thru jack, a MIDI echo option 
can be used to retransmit an exact copy of any information that’s received at the MIDI In port 
and route this data to the MIDI Out/Echo jack. Unlike a dedicated MIDI Out jack, the MIDI 

FIGURE 16.14 
MIDI in, out, and thru ports, showing the device’s signal path routing.

Device microprocessor
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Echo function can often be selected to merge incoming data with performance data that’s being 
generated by the device itself. In this way, more than one controller can be placed in a MIDI sys-
tem at one time. It should be noted that although performance and timing data can be echoed to 
a MIDI Out/Echo jack, not all devices can echo SysEx data.

Typical Configurations. Although electronic studio production equipment and setups are rarely alike 
(or even similar), there are a number of general rules that make it easy for MIDI devices to be con-
nected into a functional network. These common configurations allow MIDI data to be distributed in 
the most efficient and understandable manner possible.

As a primary rule, there are only two valid ways to connect one MIDI device to another within a MIDI 
chain, Figure 16.16:

1. Connecting the MIDI Out jack of a source device (controller or sequencer/computer) to the
MIDI In of a second device in the chain.

2. Connecting the MIDI Thru jack of the second device to the MIDI In jack of the third device in
the chain and following this same Thru-to-In convention until the end of the chain is reached.

The Daisy Chain. One of the simplest and most common ways to distribute data throughout a MIDI 
system is the daisy chain. This method relays MIDI data from a source device (controller or sequencer/
computer) to the MIDI In jack of the next device in the chain (which receives and acts upon this data). 
In turn, this device relays an exact copy of this incoming data out to its MIDI Thru jack, which is then 
relayed to the next device in the chain. This device can then relay an exact copy of this incoming data 
out to its MIDI Thru jack, which is then relayed to the next device in the chain… etc. In this way, up 
to 16 channels of MIDI data can be chained from one device to the next within a connected data net-
work—and it’s precisely this concept of transmitting multiple channels through a single MIDI line that 
makes this concept work! Let’s try to understand this concept better by looking at a few examples.

Figure 16.17A shows a simple (and common) example of a MIDI daisy chain, whereby data flows from 
a controller (MIDI Out jack of the source device) to a synth module (MIDI In jack of the second device 
in the chain), where an exact copy of this data is relayed from its MIDI Thru jack to another synth 

FIGURE 16.15 
MIDI echo configuration.

Microprocessor

FIGURE 16.16 
The two valid means of connecting one MIDI device to another.

Device #1 Device #2 Device #3

MIDI Out to MIDI In MIDI Thru to MIDI In
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(MIDI In jack of the third device in the chain). It shouldn’t be hard to understand that if our control-
ler is transmitting on MIDI channel 2, the second synth in the chain (which is set to channel 2) will 
ignore the messages and not play while the 3rd synth (which is set to channel 3) will be playing its 
heart out. The moral of this story is that although there’s only one connected data line, a wide range of 
instruments and channel voices can be played in a surprisingly large number of combinations, all by 
using individual channel assignments along a daisy chain.

Another example, Figure 16.17b, shows how a computer can easily be designated as the master source 
within a daisy chain, so that a sequencing program could be used to control the entire playback and 
channel routing functions of a daisy-chained system. In this situation, the MIDI data flows from a mas-
ter controller/synth to the MIDI In jack of a computer’s MIDI interface—where the data can be played 
into, processed, and rechannelized through a MIDI sequencer. The MIDI Out of the interface is then 
routed back to the MIDI In jack of the master controller/synth (which receives and acts on this data). 
In turn, the controller relays an exact copy of this incoming data out to its MIDI Thru jack, which is 
then relayed to the next device in the chain. This device can then relay an exact copy of this incoming 
data out to its MIDI Thru jack, which is then relayed to the next device in the chain, etc. When we stop 
to think about this second example, the controller is used to perform into the MIDI sequencer, which 
then is used to communicate this edited and processed performance data out to the various instru-
ments throughout the connected MIDI chain.

The Multiport Network. Another common approach to routing MIDI throughout a production system 
involves distributing MIDI data through the multiple 2, 4 and 8 In/Out ports that are available on a 
newer multiport MIDI interfaces or through the use of multiple MIDI interfaces (typically these are 
USB devices).

In larger, more complex, MIDI systems, a multiport MIDI network, Figure 16.17, offers several advan-
tages over a single daisy chain path. One of the most important is its ability to address devices within 
a complex setup that requires more than 16 MIDI channels. For example, a 2  2 MIDI interface that 
offers up two-independent In/Out paths is capable of addressing up to 32 channels simultaneously 
(i.e., port A 1–16 and port B 1–16), whereas an 8  8 port interface is capable of addressing up to 128 
individual MIDI channels.

The MIDI interface
Although computers and electronic instruments both communicate using the digital language of 1s 
and 0s, computers simply can’t understand the language of MIDI without the use of a device that  
translates the serial messages into a data structure that computers can comprehend. Such a device is 
known as the MIDI interface.

In  Out  Thru In  Out  Thru In  Out  Thru

To other devices

A. Typical daisy chain hookup.

In  Out

In Out Thru In Out Thru

In Out Thru In Out Thru

To other devices

 B. Example of how a computer can be
connected into a daisy chain.

FIGURE 16.17 
Example of a connected MIDI system using a daisy chain.
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A wide range of MIDI interfaces currently exist that can be used with most computer systems and OS 
platforms. For the casual and professional musician, interfacing MIDI into a production system can be 
done in a number of ways. Probably the most common way to access MIDI In, Out, and Thru jacks is 
on a modern-day USB or FireWire audio interface or instrument/DAW controller surface. It’s become 
a common matter for portable devices to offer 16 channels of I/O (on one port), while multi-channel 
interfaces often include multiple MIDI I/O ports that can give you access to 32 or more channels.

Another additional option is to choose a USB MIDI interface that can range from devices that include 
a single I/O port (16 channels) to a multiport system that can easily handle up to 128 channels over 
eight I/O ports. The multiport MIDI interface, Figure 16.18, is often the device of choice for most 
professional electronic musicians who require added routing and synchronization capabilities. These 
rack-mountable USB devices can be used to provide eight independent MIDI Ins and Outs to easily 
distribute MIDI and time code data through separate lines over a connected network.

Hardware and software electronic instruments
Since its inception in the early 80s, MIDI-based electronic musical instruments have helped to 
shape the face and sounds of our modern music culture. These devices (along with digital audio and 
advances in recording equipment technology) have altered music production, through the creation of 
one of the most cost-effective and powerful tools in the development of music history—the personal 
project studio.

The following is a sample listing of the many hardware MIDI instrument types that are currently avail-
able on the market.

The Synth. A synthesizer, Figure 16.19, is an electronic instrument that uses multiple sound generators 
to create complex waveforms that can be combined (using various waveform synthesis techniques) into 
countless sonic variations. These synthesized sounds have become a basic staple of modern music and 
vary from sounding cheesy, to those that closely mimic traditional instruments all the way, to those 
that generate rich, otherworldly sounds that literally defy classification.

Synthesizers (also known as synths) generate sounds and percussion sets using a number of different 
technologies or program algorithms. The earliest synths were analog in nature and generated sounds 
using additive or subtractive FM (frequency modulation) synthesis. This process generally involves the 
use of at least two signal generators (commonly referred to as operators) to create and modify a voice. 
Often, this is done through the analog or digital generation of a signal that modulates or changes the 
tonal and amplitude characteristics of a base carrier signal. More sophisticated FM synths can use up to 

FIGURE 16.18 
M-Audio MIDISPORT 4  4 MIDI interface. (Courtesy of M-Audio, a division of Avid Technology, Inc., www.m-audio.com.)

FIGURE 16.19 
Bass Station analog bass synth. (Courtesy of Novation Digital Music Systems, Ltd.; www.novationmusic.com.)
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four or six operators per voice and also often use filters and variable amplifier types to alter the signal’s 
characteristics into a sonic voice that either roughly imitates acoustic instruments or creates sounds 
that are totally unique.

Another technique that’s used to create sounds is wavetable synthesis. This technique works by storing 
small segments of digitally sampled sound into a read-only memory chip. Various sample-based syn-
thesis techniques use sample looping, mathematical interpolation, pitch shifting, and digital filtering 
to create extended and richly textured sounds that use a very small amount of sample memory.

Synthesizers are also commonly designed into rack- or half-rack-mountable modules, Figure 16.20, 
that contain all of the features of a standard synthesizer, except that they don’t incorporate a keyboard 
controller. This space-saving feature means that more synths can be placed into your system and can 
be controlled from a master keyboard controller or sequencer, without cluttering up the studio with 
redundant keyboards.

Software Synthesis and Sample Re-synthesis. Since wavetable synthesizers derive their sounds from 
prerecorded samples that are stored in a digital memory medium, it logically follows that these sounds 
can also be stored on hard disk (or any other medium) and loaded into the RAM memory of a per-
sonal computer. This process of downloading wavetable samples into a computer and then manipulat-
ing these samples is used to create what is known as a virtual or software synthesizer, Figure 16.21.

In recent years, software synths have grown from being novel and obscure programs that were primar-
ily used by the academic community to their present state of being widely accepted in the production 
community as a cost-effective musical instrument. These software modules can be used in conjunction 
with a digital audio workstation to offer up a wide range of complex sounds that can mimic traditional 
instruments, as well as create sonic textures that are both new and interesting.

Sample re-synthesis software systems are able to take software synthesis to a new level, by allowing the 
user to build, save, and recall sonic patches that can be built from traditional synthesis building blocks 
(such as oscillators, voltage-controlled amplifiers, voltage-controlled filters, and mixers). In addition to 
sound generation, digital audio samples can be imported and re-synthesized in a way that can create 
sounds of almost any texture or type that you can possibly imagine. All of these software blocks can 
be combined in a graphic environment that allows these instruments, textures, and soundscapes to be 
easily saved to disk for later recall.

Using various internal software data communications protocols, it’s possible to communicate MIDI, 
audio, timing sync and control data between an instrument (or effect plug-in) and a host DAW program/

FIGURE 16.21 
Steinberg xphrase VSTi software synth. (Courtesy of Steinberg Media Technologies GmbH, a division of Yamaha Corporation,  
www.steinberg.net.)

FIGURE 16.20 
Yamaha MOTIF-RACK ES synth. (Courtesy of Yamaha Corporation of America, www.yamaha.com.)
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CPU processor. These plug-in protocols make it possible for much or all of the audio and timing data to 
be routed through the host audio application, allowing the instrument or application to either integrate 
into the DAW or application or to work in tandem so as to route the audio and performance/control 
data through the host application with relative ease. A few of these protocols include:

 Steinberg’s VST (Virtual Studio Technology)
 MOTU’s MAS (MOTU Audio System)
 Propellerheads ReWire.

Samplers. A sampler, Figure 16.22, is a device that can convert audio into a digital form and/or 
manipulate prerecorded sampled data, using the system’s own random access memory (RAM). Once 
loaded into RAM, the sampled audio can be edited, transposed, processed, and played in a polyphonic 
musical fashion.

Basically, a sampler can be thought of as a wavetable synth that lets you record, load, and edit samples 
into RAM memory. Once loaded, these sounds (whose length and complexity are often limited only by 
memory size and your imagination) can be looped, modulated, filtered, and amplified (according to 
user or factory setup parameters), in a way that allows the waveshapes and envelopes to be modified. 
Signal processing capabilities, such as basic editing, looping, gain changing, reverse, sample-rate con-
version, pitch change, and digital mixing capabilities can also be altered and/or varied.

A hardware sampler’s design will often include a keyboard or set of trigger pads that let you polyphon-
ically play samples as musical chords, sustain pads, triggered percussion sounds, or sound effect events. 
These samples can be played according to the standard Western musical scale (or any other scale, for 
that matter) by altering the playback sample rate over the controller’s note range. For example, press-
ing a low-pitched key on the keyboard will cause the sample to be played back at a lower sample rate, 
while pressing a high-pitched one will cause the sample to be played back at rates that would put 
Mickey Mouse to shame. By choosing the proper sample rate ratios, sounds can be polyphonically 
played (whereby multiple notes are sounded at once) at pitches that correspond to standard musical 
chords and intervals.

A sampler (or synth) with a specific number of voices (i.e., 64 voices) simply means that up to 64 notes 
can be simultaneously played on a keyboard at any one time. Each sample in a multiple-voice system 
can be assigned across a performance keyboard, using a process known as splitting or mapping. In this 
way, a sound can be assigned to play across the performance surface of a controller over a range of 
notes, known as a zone, Figure 16.23. In addition to grouping samples into various zones, velocity can 
enter into the equation by allowing multiple samples to be layered across the same keys of a controller, 
according to how soft or hard they are played. For example, a single key might be layered so that press-
ing the key lightly would reproduce a softly recorded sample, while pressing it harder would produce a 
louder sample with a sharp percussive attack. In this way, mapping can be used to create a more realis-
tic instrument or wild set of soundscapes that change not only with the played keys, but with velocity 
ranges as well.

FIGURE 16.22 
Akai MPC-1000 Music Production Center. (Courtesy of Akai Professional, www.akaipro.com.)
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In addition to hardware sampling systems, a growing number of virtual or software samplers exist that 
use a computer’s existing memory, processing, and signal routing capabilities in order to polyphonic-
ally reproduce samples in real time.

Offering much of the same functionality as their hardware counterparts, these software-based systems, 
Figure 16.24, are capable of editing, mapping, and splitting sounds across a MIDI keyboard, using on-
screen graphic controls and DAW integration that has improved to the point of equaling or surpassing 
their hardware counterparts in cost-effectiveness, power, and ease of use.

As with a software synth, software samplers derive their sounds from recorded and/or imported 
audio data that is stored as digital audio data within a personal computer. Using the DSP capabili-
ties of today’s computers (as well as the recording, sequencing, processing, mixing, and signal routing 
capabilities of most digital audio workstations), most software samplers are able to store and access 
samples within the internal memory of a laptop or desktop computer. Using a graphic interface, these 
sampling systems often allow the user to:

 Import previously recorded soundfiles (often in WAV, AIF, and other common formats)
 Edit and loop sounds into a usable form
 Vary envelope parameters (i.e., dynamics over time)
 Vary processing parameters
 Save the edited sample performance setup as a file for later recall.

Software sampler systems are also often able to communicate MIDI, audio, timing sync and control 
data between a hard- or software instrument and a host DAW program/CPU processor, allowing for a 
wide range of control and setup recall.

The Drum Machine. The drum machine is most commonly a sample-based digital audio device that 
can’t record audio into its internal memory (although this has changed in recent years, allowing it to 
import, record, and manipulate sampled audio much like a sampler). Traditionally, these hardware or 
software systems use ROM-based, prerecorded samples to reproduce high-quality drum sounds.  

Hard grand piano Loud honky piano

Upright bass Soft grand piano soft honky piano

FIGURE 16.23 
Samples can be mapped to various zones on a keyboard.

FIGURE 16.24 
Steinberg’s HALion VST software sampler. (Courtesy of Steinberg Media Technologies GmbH, a division of Yamaha Corporation, 
www.steinberg.net.)



22

These factory-loaded sounds often include a wide assortment of drum sets, percussion sets, rare and 
wacky percussion hits, and effected drum sounds (i.e., reverberated, gated, etc.). Who knows, you 
might even encounter “Hit me!” screams from the venerable King of Soul—James Brown.

Most hardware drum machines allow prerecorded samples to be assigned to a series of playable key-
pads that are often located on the machine’s top face. This provides a straightforward controller sur-
face that usually includes velocity and aftertouch dynamics. Drum voices can be assigned to each pad 
and edited using such control parameters as tuning, level, output assignment, and panning position. 
Multiple outputs are often provided, enabling individual or groups of voices to be routed to a specific 
output on a mixer or console.

Although a number of hardware drum machine designs include a built-in sequencer, it’s more likely 
that these workhorses will be triggered from a MIDI sequencer. This lets us take full advantage of the 
real-time performance and editing capabilities that a sequencer has to offer. For example, sequenced 
patterns can easily be created in step time (where notes are entered and assembled into a rhythmic 
pattern one note at a time) and can then link together into a song that’s composed of several rhythmic 
patterns. Alternately, performing into a sequencer on-the-fly can help create a live feel or you can com-
bine step- and real-time tracks to create a human-sounding composite rhythm track. In the final analy-
sis, the style and approach to composition is entirely up to you.

In addition to their hardware counterparts, an increasing number of software drum and groove instru-
ment plug-ins have come onto the market that allow for drum patterns to be added to a production in 
a wide range of pattern and playing styles, Figure 16.25.

Performance and parameter controllers
MIDI performance controllers are used to translate the voicings and expressiveness of a musical per-
formance into MIDI data, while a parameter controller surface is used to alter the control variables of a 
workstation, device or instrument.

It should be noted that a MIDI controller is expressly designed to control other devices (be they for 
sound, light or mechanical control) within a connected system. It contains no internal tone generators 
or sound-producing elements. Instead, it offers a wide range of controls for handling control, trigger 
and device switching events. In short, controllers have become an integral part of music production, 
and are available in many incarnations to control and emulate many types of musical instruments.

Keyboard Controller. The MIDI keyboard controller, Figure 16.26, is a keyboard device that’s expressly 
designed to control hard/software synths, samplers, modules and other devices within a connected 
MIDI system. It contains no internal tone generators or sound-producing elements. Instead, its design 
includes a performance keyboard and controls for handling MIDI performance, control, and device 
switching events.

FIGURE 16.25 
Groove Agent 3 VST Virtual Drummer. (Courtesy of Steinberg Media Technologies GmbH, a division of Yamaha Corporation, www.
steinberg.net).
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Percussion Controllers. MIDI percussion controllers are used to translate the voicings and expressive-
ness of a percussion performance into MIDI data. These devices are great for capturing the feel of a live 
performance, while giving you the flexibility of recording and automating a performance within a DAW/
sequencer environment. These controllers vary over a wide range from being a simple and cost-effective 
setup (i.e., using the pads on a drum machine, keys on a keyboard surface, or pads on an intro-level 
drum controller) to a full-blown drum kit that mimics its acoustic cousin, Figures 16.27 and 16.28.

FIGURE 16.26 
Novation ReMOTE 25SL MIDI Controller/Keyboard. (Courtesy of Novation Digital Music Systems, Ltd, www.novationmusic.com.)

FIGURE 16.27 
Trigger Finger 16-Pad MIDI Drum Control Surface. (Courtesy of M-Audio, a division of Avid Technology, Inc., www.m-audio.com.)

FIGURE 16.28 
DM5 Electronic Drum Kit. (Courtesy of Alesis, www.alesis.com.)
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Wind Controllers. MIDI wind controllers are expressly designed to bring the breath and key articu-
lation of a woodwind or brass instrument to a MIDI performance. These controller types are used 
because many of the dynamic- and pitch-related expressions (such as breath and controlled pitch 
glide) simply can’t be communicated from a standard music keyboard. In these situations, wind con-
trollers can often help create a dynamic feel that’s more in keeping with their acoustic counterparts by 
using an interface that provides special touch-sensitive keys, glide- and pitch-slider controls, and real-
time breath sensors for controlling dynamics.

MIDI Guitars. Guitar players often work at stretching the vocabulary of their instruments beyond the 
traditional norm. They love doing nontraditional gymnastics using such tools of the trade as distor-
tion, phasing, echo, feedback, etc. Due to advances in guitar pickup and microprocessor technology, 
it’s also possible for the notes and minute inflections of guitar strings to be accurately translated into 
MIDI data. With this innovation, many of the capabilities that MIDI has to offer are available to the 
electric (and electronic) guitarist. For example, a guitar’s natural sound can be layered with a synth pad 
that’s been transposed down, giving it a rich thick sound that just might shake your boots. Alternately, 
recording a sequenced guitar track into a session would give a producer the option of changing and 
shaping the sound later in mixdown! On-stage program changes are also a big plus for the MIDI guitar, 
allowing the player to radically switch between guitar voices from the guitar or sequencer or by stomp-
ing on a MIDI foot controller.

SEQUENCERS
Apart from electronic musical instruments, one of the most important tools that can be found in the 
modern-day project studio is the MIDI sequencer. Basically, a sequencer is a digital device that’s used 
to record, edit, reproduce, and distribute MIDI messages in a sequential fashion. Most sequencers func-
tion using a traditional track-based interface, separating different instruments, voices, beats, etc. in a 
way that makes it easier for us humans to view MIDI data as though they were linear tracks on a DAW 
or tape machine.

These virtual tracks contain MIDI-related performance and control events that are made up of such 
channel and system messages as note on/off, velocity, modulation, aftertouch, and program/continu-
ous-controller messages. Once a performance has been recorded into a sequencer’s memory, these 
events can be graphically (or audibly) edited into a musical performance, played back and saved to a 
digital storage media for recall at any time.

Integrated Sequencers. Some of the newer and more expensive keyboard synth and sampler designs 
include a built-in sequencer. These portable keyboard workstations have the advantage of letting you 
take both the instrument and sequencer on the road without having to drag a computer along.

Integrated sequencers are designed into an instrument for the sole purpose of sequencing MIDI data, and 
include integrated controls for performing sequence-specific functions. Ease of use and portability are 
often the advantages of a hardware sequencer, most of which are designed to emulate the basic func-
tions of a tape transport (record, play, start/stop, fast forward, and rewind).

These devices generally offer a moderate amount of editing features, including note editing, velocity 
and other controller messages, program change, cut and paste and track merging capabilities, tempo 
changes, etc. Programming, track, and edit information is commonly viewed on a liquid crystal display 
(LCD) that’s often limited in size and resolution and generally limits information to a single parameter 
or track at a time.

These sequencers often don’t offer a wide range of editing tools beyond standard transport functions, 
punch-in/out commands and other basic edit tools. However, they’re often more than adequate for 
capturing and reproducing a performance and can be integrated with other instruments that are con-
nected in a MIDI chain.

Software Sequencers. By far, the most common sequencer type is the software MIDI sequencer. These 
programs or integrated components of a digital audio workstation take advantage of the versatility that 
a computer can offer in the way of speed, flexibility, digital signal processing, memory management, 
and signal routing.

Computer-based sequencers offer numerous functional advantages over their hardware counterparts. 
Among these are increased graphic capabilities (which often offers extensive control over track- and 
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transport-related functions), standard computer cut and paste techniques, an on-screen graphic envir-
onment (allowing easy manipulation of program and edit-related data), routing of MIDI to multiple 
ports in a connected system, and the graphic assignment of instrument voices via program change 
messages (not to mention the ability to save and recall files using standard computer memory media). 
Now, let’s take a look at how these devices function.

A basic introduction to sequencers
When dealing with any type of sequencer, one of the most important concepts to grasp is the fact that 
these devices don’t store sound directly—instead, they encode MIDI messages that instruct an instru-
ment to play a particular note, over a certain channel, at a specific velocity and with any optional 
controller values. In other words, a sequencer stores music-related data commands that follow in a 
sequential order, which then tells instruments and/or devices how their voices are to be played and/or 
controlled. This simple (but important) fact means that the amount of encoded data is far less memory 
intensive than its hard disk audio or video recording counterparts and that the data overhead that’s 
required by MIDI is very small. In short, a computer-based sequencer can simultaneously operate in a 
digital audio, digital video, processing environment without placing an additional significant load on a 
computer’s CPU.

As you might expect, many sequencer types are currently on the market, with each offering its own set 
of advantages and disadvantages. It’s also true that each sequencer has its own basic operating feel, and 
thus choosing the best tool and toy for the job or studio is totally up to you.

Recording. From a functional standpoint, a sequencer is used as a digital workspace for creating per-
sonal compositions in environments that range from the bedroom to more elaborate project studios. 
Whether they’re hardware or software based, most sequencers use a working interface that’s designed to 
emulate the traditional multitrack recording environment. A tapelike transport lets you move from one 
location to the next using standard Play, Stop, FF, REW and Rec command buttons. Beyond using tradi-
tional record-enable button(s) to arm selected recording track(s), all you need to do is select the MIDI 
input (source) and outputs (destination) ports, instrument/voice MIDI channel, instrument patch and 
other setup information, press the record button, and start playing.

Once you’ve finished laying down a track, you can jump back to any point in the sequence and listen to 
your original track while continuing to lay down additional MIDI tracks until the song begins to form.

Almost all sequencers are capable of punching in and out of record while playing a sequence. This com-
mon function lets you drop in and out of record on a track (or tracks) in real-time. Although punch-in/
out points can often be manually performed on-the-fly, most sequencers can perform a punch automat-
ically, once the in/out measure numbers have been graphically or numerically entered. The sequence 
can then be rolled back a few measures and the artist can play along, while the sequencer automatically 
performs the necessary switching functions (usually with multiple take and full undo capabilities).

In addition to recording a performance in a track-based environment, most sequencers let you enter 
note values into sequence one note at a time. This feature (known as step time) lets you give the 
sequencer a basic tempo and note length (i.e., quarter note, sixteenth note, etc.) and then manually 
enter the notes from a keyboard or other controller. This data entry style is often (but not always) used 
with fast, hi-tech and dance styles, where a real-time performance just isn’t possible or accurate enough 
for the song.

Whether you’re recording a track in real-time or in step-time, it’s almost always best to select the proper 
song tempo before recording a sequence. I bring this up because most sequencers are able to output 
a click track that can be used as an accurate audible guide for keeping in time with the song’s selected 
tempo. It’s also critical that the tempo be accurate when trying to sync groove loops and rhythms to a 
sequence via plug-ins or external instruments.

Editing. One of the more important features that a sequencer (or sequenced MIDI track within a DAW) 
has to offer is its ability to edit tracks or blocks within a track. Of course, these editing functions and 
capabilities often vary between hardware and software sequencers.

The main track window of a sequencer or MIDI track on a DAW is used to display such track informa-
tion as the existence of track data, track names, MIDI port assignments for each track, program change 
assignments, volume controller values, etc.
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Depending on the sequencer, the existence of MIDI data on a particular track at a particular measure 
point (or over a range of measures) is often indicated by the visual display of MIDI data in a piano-roll 
fashion (showing the general vertical and length placements of the notes as they progress though the 
musical passage) as shown in Figure 16.29.

By navigating around the various data display and parameter boxes, it’s possible to use cut and paste 
and/or direct edit techniques to vary note, length and controller parameters for almost every facet of 
a section or musical composition. For example, let’s say that we really screwed up a few notes when 
laying down an otherwise killer bass riff. With MIDI, fixing the problem is totally a no-brainer. Simply 
highlight each fudged note and drag it to it’s proper note location. We can even change the beginning 
and end points in the process. In addition, tons of other parameters can be changed including velocity, 
modulation and pitch bend, note and song transposition, quantization, and humanizing (factors that 
eliminate or introduce human timing errors that are generally present in a live performance), as well as 
full control over program and continuous controller messages. The list goes on.

Playback. Once a composition is complete, all of the MIDI tracks in a project can be transmitted 
through the various MIDI ports and channels to plug-ins, instruments, or devices for playback. Since 
the data exists as encoded real-time control commands, you can listen to the sequence and make 
changes at any time. For example, you could change instrument settings (by changing or editing patch 
voices), alter volume and other mix changes, or experiment with such controllers as pitch bend, modu-
lation or aftertouch, and even change the tempo and key signature. In short, this medium is infinitely 
flexible how a performance and/or set of parameters can be created, saved, folded, spindled, and muti-
lated until you’ve arrived at the sound and feel that you want.

Another of the greatest beauties of MIDI production is its ability to be altered at any later point in time. 
For example, let’s say that 5 years ago you laid down a killer synth riff in a song that made it onto the 
charts. A couple of weeks ago a producer came to you in hopes of collaborating on a remix. Of course, 
technology marches on and your studio has improved over time. First off, even though a lot of the setup 
parameters have been saved with the original sequence, let’s assume that you were smart enough to 
keep really good setup notes. One big change, however, is that you have a new software synth that has 
a patch that sounds better than the original patch. Since the remix is to be used in an upcoming film 
track, MIDI can be used to tweak things up a bit by splitting the riff into two parts: one that contains 
the lower notes and another the highs. By sending the lows to one patch on the synth and the highs to 
another, not only have you improved the overall sound, you’ve filled it out by expanding the soundfield 
into surround. Without MIDI, you’d have to arrange for a new session and hope that it all goes well; 
with MIDI, the performance is exactly the same and improvements are made in a no-brainer environ-
ment. This is what MIDI’s all about—performance, repeatability, easy editing, and cost-effective power!

I now have to take time out to give you a few pointers that will make your life easier when dealing with 
MIDI production.

1. Remember to set the session to the proper tempo at the beginning of the session. Although tempo
can be changed at a later time, attention to tempo details can help you to avoid later pitfalls.

2. Always name your track before you go into record (this goes for both audio and MIDI tracks).
Properly naming your tracks (i.e., with its instrument, patch name) is the first step toward good
documentation.

FIGURE 16.29 
The presence of MIDI message data will often appear as a series of highlighted areas within a sequence track or a window. 
(Courtesy of Steinberg Media Technologies GmbH, a division of Yamaha Corporation, www.steinberg.net.)
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3. You can never overdocument a session. Keeping good instrument, patch, settings, musician, stu-
dio, and other notes might not only come in handy—it can save your butt if you need to revisit
the tracks in the future.

4. Never delete a final take MIDI track from a DAW session. Even though you’ve transferred the
instrument to an audio track, it is always wise to archive the original MIDI track with session.
Trust me, both you and the producer will be glad you did, should any changes need to be made
to the track in the future.

Other software sequencing applications
In addition to DAW and sequencing packages that are designed to handle most of the day-to-day pro-
duction needs of the musician, other types of software tools and applications exist that can help to 
carry out specialized tasks. A few of these packages include drum pattern editors, algorithmic compos-
ition programs, patch editors and music printing programs.

Drum-Pattern Editor/Sequencers. At any one time, there are a handful of companies that have soft-
ware or hardware devices that are specifically designed to create and edit drum patterns. In addition, 
most of the higher-end DAW audio production systems also include a drum pattern editor that relies 
on user input and quantization to construct and chain together any number of user-created percussion 
grooves. More often than not, these editors use a grid pattern that displays drum-related MIDI notes or 
subpatterns along the vertical axis, while time is represented in metric divisions along the horizontal 
axis, Figure 16.30. By clicking on each grid point with a mouse or other input system, individual drum 
or effect sounds can be built into rhythmic patterns.

Once created, these and other patterns can be linked together to create a partial or complete rhythm 
section within a song. These editors commonly offer such features as the ability to change MIDI note 
values (thereby changing drum voices), note length, quantization and humanization, as well as adjust-
ments to note and pattern velocities. Once completed, the sequenced drum track (or chained patterns) 
can be imported into a sequence, saved, and/or exported.

Groove Tools. Getting into the groove of a piece of music often refers to a feeling that’s derived from 
the underlying foundation of the piece: rhythm. With the introduction and maturation of MIDI and 
digital audio, new and wondrous tools have made their way into the mainstream of music production 
that can help us to use these technologies to forge, fold, mutilate and create compositions that make 
direct use of rhythm and other building blocks of music through the use of looping technology.

Of course, the cyclic nature of loops can be—repeat repeat—repetitive in nature, but new toys and tech-
niques in looping have injected the notion of flexibility, real-time control, real-time processing, and 
mixing to new heights that can be used by an artist as a wondrously expressive tool.

Loop-based audio editors are groove-driven music programs, Figures 16.31 and 16.32, that are 
designed to let you drag and drop prerecorded or user-created loops and audio tracks into a graphic 

FIGURE 16.30 
Steinberg Cubase/Nuendo drum edit window. (Courtesy of Steinberg Media Technologies GmbH, a division of Yamaha Corporation, 
www.steinberg.net.)
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multitrack production interface. At their basic level, these programs differ conceptually from their tra-
ditional DAW counterpart, in that the pitch- and time-shift architecture is so variable and dynamic that 
even after the basic rhythmic, percussive and melodic grooves have been created, their tempo, track 
patterns, pitch, session key, etc. can be quickly and easily changed at any time. With the help of custom 
royalty-free loops (available from the manufacturer and/or third-party companies), users can quickly 
and easily experiment with setting up grooves, backing tracks, and creating a sonic ambience by simply 
dragging the loops into the program’s main soundfile view where they can be arranged, edited, proc-
essed, saved, and exported.

FIGURE 16.31 
Steinberg’s Sequel music software. (Courtesy of Steinberg Media Technologies GmbH, a division of Yamaha Corporation,  
www.steinberg.net.)

A. Arrangement view. 

B. Session view.

FIGURE 16.32 
Ableton live performance audio workstation. (Courtesy of Ableton, www.ableton.com.)
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One of the most interesting aspects of a loop-based editor is its ability to match the tempo of a spe-
cially programmed loop soundfile to the tempo of the current session. Amazingly enough, this process 
isn’t that difficult to perform, as the program extracts the length, native tempo, and pitch information 
from the imported file’s header and (using various digital time and/or pitch change techniques) adjusts 
the loop to fit the native time/pitch parameters of the current session. This means that loops of various 
tempos and musical keys can be automatically adjusted in length and pitch so as to fit in time with 
previously existing loops. These shifts in time to match a loop to the session’s native tempo can actu-
ally be performed in a number of ways. For example, using basic DSP techniques to time-stretch and 
pitch-shift a recorded loop will often work well over a given plus-or-minus percentage range (which 
is often dependent on the quality of the program algorithms). Beyond this range, the loop will often 
begin to distort and become jittery. At such extremes, other playback algorithms and beat slice detec-
tion techniques can be used to make the loop sound more natural. For example, drums or percussion 
can be stretched in time by adding additional silence between the various hit points within the loop at 
precisely calculated intervals. In this way, the pitch will remain the same while the length is altered. Of 
course, such a loop would sound choppy and broken up when played on its own; however, when bur-
ied within a mix, it might work just fine. It’s all up to you and the current musical context.

The software world doesn’t actually hold the total patent on looping tools and toys; there are a number 
of groove keyboards and module boxes that are on the market. These systems, which range widely in 
sounds, functionality, and price, can offer up a wide range of unique sounds that can be quite useful 
laying a foundation under your production. In the past, getting a hardware grove tool to sync into a ses-
sion could be time-consuming, frustrating, and problematic, taking time and tons of manual reading. 
However, with the advent of powerful time and pitch shift processing within most DAWs, the sounds 
from these hardware devices can be pulled into a session without too much trouble. For example, a sin-
gle groove loop (or multiple loops) could be recorded into a DAW (at a bpm that’s near to the session’s 
tempo), edited, and then imported into the session, at which time the loop could be easily stretched 
into time sync, allowing it to be looped to your heart’s content. Just remember, necessity is the mother 
of invention. Patience and creativity are probably your most important tools in the looping process.

If there’s a software package that has gripped the hearts and minds of electronic musicians in the 21st 
century, it would have to be Reason from the folks at Propellerheads, Figure 16.33. Reason defies spe-
cific classification in that it’s an overall music production environment that has many facets. For exam-
ple, it includes a MIDI sequencer, as well as a wide range of software instrument modules which can be 
played, mixed, and combined in a comprehensive environment that can be controlled from any exter-
nal keyboard and/or MIDI controller. Reason also includes a large number of signal processors that can 
be applied to any instrument or instrument group under full and easily controlled automation.

FIGURE 16.33 
Reason music production environment. (Courtesy of Propellerheads software, www.propellerheads.se.)
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In essence, Reason is a combination of modeled representations of vintage analog synthesis gear, mixed 
with the latest digital synthesis and sampling technology. Combine these with a modular approach to 
signal and effects processing; add a generous amount of internal and remote mix and controller man-
agement (via an external MIDI controller); top this off with a quirky but powerful sequencer; and you 
have a software package that’s powerful enough for top-flight production and convenient enough that 
you can build tracks from your laptop from your seat in a crowded plane. I know that it sounds like 
I read this from a sales brochure, but these are the basic facts of this program. When asked to explain 
Reason to others, I’m often at a loss as the basic structure is so open-ended and flexible that the pro-
gram can be approached in as many ways as there are people who produce on it. That’s not to say that 
Reason doesn’t have a signature sound—it often does. However, it’s a tool that can be either used on its 
own or in combination with other production instruments and tools.

Algorithmic Composition Programs. Algorithmic composition programs are interactive sequencers 
that directly interface with MIDI controllers or imported files to generate a performance in real-time, 
according to user-programmed computer parameters. In short, once you give it a few basic musical 
guidelines, it can act as a compositional robot to generate performances or musical parts on its own 
in order to help you gain new ideas for a song, create an automatic accompaniment, make improvisa-
tional exercises, create special performances, or just plain have fun.

This type of sequencer can be programmed to control the performance according to musical key, gen-
erated notes, basic order, chords, tempo, velocity, note density, rhythms, accents, etc. Alternatively, an 
existing standard MIDI file can be imported and further manipulated in real-time, according to new 
parameters that can be varied from a computer keyboard, mouse, or controller. Often such interac-
tive sequencers will accept input from multiple players, allowing it to be performed as a collective 
jam. Once a composition has been satisfactorily generated, a standard MIDI file can be created and 
imported into any sequencer.

Patch Editors. The vast majority of MIDI instruments and devices store their internal patch data within 
RAM memory. Synths, samplers, or other devices contain information on how to configure oscilla-
tors, amplifiers, filters, tuning, and other presets in order to create a particular sound timbre or effect. 
In addition to controlling sound patch parameters, a unit’s internal memory can also store such setup 
information as effects processor settings, keyboard splits, MIDI channel routing, controller assign-
ments, etc.

Although these settings can be manually accessed from the device’s panel controls, another (and 
sometimes more straightforward) way to gain real-time control over the parameters of an instrument 
or devices is through the use of a patch editor, Figure 16.34. A patch editor is a software package that’s 
used to provide on-screen controls and graphic windows for emulating and varying an instrument’s 
parameter controls in real-time.

Direct communication between a patch editor and the device’s microprocessor commonly occurs 
through the use of MIDI SysEx messages. Almost all popular voice and setup editing packages include 
provisions for receiving and transmitting bulk patch data in this way. This makes it possible to save 
and organize large numbers of patch-data files, vary setting in real-time, and print out patch parameter 
settings.

FIGURE 16.34 
M-Audio Enigma Software Librarian and Editor. (Courtesy of M-Audio, a division of Avid Technology, Inc., www.m-audio.com.)
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In addition to software editing packages, there are also hardware solutions for gaining quick and easy 
access to device parameters via SysEx. In recent years, MIDI data controllers, Figure 16.35, have sprung 
onto the market that can control a wide range of instruments and devices using data faders and soft 
buttons to vary patch, system, and performance parameters, in real-time. In many situations, these con-
trollers can also be used to directly control the volume and mix parameters of a DAW.

Music-Printing Programs. In recent years, the field of transcribing musical scores onto paper has been 
strongly affected by computer, DAW, and MIDI technology. This process has been enhanced through 
the use of newer generations of software that make it possible for music notation data to be entered 
into a computer either manually (by placing the notes onto the screen via keyboard and/or by mouse 
movements) or via direct MIDI input. Once entered, these notes can be edited in an on-screen envir-
onment using a music printing program (or notation app within a DAW) that lets you change and 
configure a musical score or lead sheet using standard cut-and-paste edit techniques. In addition, most 
printing programs can play the various instruments in a MIDI system directly from the score. A final 
and important program feature is their ability to print out hard copies of a score or lead sheets in a 
wide number of print formats and styles.

These programs or DAW program apps, Figure 16.36, allow musical data to be entered into a compu-
terized score in a number of manual and automated ways (often with varying degrees of complexity 
and ease). Although scores can be manually entered, most music-transcription programs will generally 
accept direct MIDI input, allowing a part to be played directly into a sequence. This can be done in 
real-time (by playing a MIDI instrument or finished sequence into the program), in step-time (entering 

FIGURE 16.35 
Mackie C4 plug-in and virtual instrument controller. (Courtesy of Loud Technologies, Inc., www.mackie.com.)

FIGURE 16.36 
Score application within Steinberg’s Nuendo DAW software. (Courtesy of Steinberg Media Technologies GmbH, a division of 
Yamaha Corporation, www.steinberg.net.)
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the notes of a score one note at a time from a MIDI controller), or from an existing standard or pro-
gram-specific MIDI file.

Another way to enter music into a score is through the use of an optical recognition program. These pro-
grams let you place sheet music or a printed score onto a standard flatbed scanner, scan the music into a 
program and then save the notes and general layout as a NIFF (notation interchange file format) file.

One of the biggest drawbacks to automatically entering a score via MIDI (either as a real-time perform-
ance or from a MIDI file) is the fact that music notation is a very interpretive art. “To err is human,” 
and it’s commonly this human feel that gives music its full range of expression. It is very difficult, how-
ever, for a program to properly interpret these minute yet important imperfections and place the notes 
into the score exactly as you want them. (For example, it might interpret a held quarter-note as either a 
dotted quarter-note or one that’s tied to a thirty-second note.) Even though these computer algorithms 
are getting better at interpreting musical data and quantization can be used to tell a computer to round 
a note value to a specified length, a score will still often need to be manually edited to correct for 
misinterpretations.

MULTIMEDIA AND THE WEB
It’s no secret that modern-day computers have gotten faster, sleeker, and sexier in their overall design. 
In addition to its ability to act as a multifunctional production workhorse, one of the crowning 
achievements of the modern computer is the degree of media and networking integration that has 
worked its way into our collective consciousness and become known as multimedia.

The combination of working and/or playing with multimedia has found its way into modern computer 
culture through the use of various hardware and software systems that work in a multitasking environ-
ment and combine to bring you a unified experience that seamlessly involves such media types as:

 Text
 Graphics
 Video
 Audio and music
 Computer animation
 MIDI

The obvious reason for integrating and creating these media types is the human desire to create content 
with the intention of sharing and communicating one’s experiences with others. This has been done 
for centuries in the form of books and more recently by movies and television. In the here and now, 
the Web has been added to the communications list, in that it has created a vehicle that allows indi-
viduals (and corporate entities alike) to communicate a multimedia experience to millions and then 
allows each individual to manipulate that experience, learn from it, and even respond in an interactive 
fashion. The Web has indeed unlocked the potential for experiencing multimedia events and informa-
tion in a way that makes each of us a participant, not just a passive spectator.

One of the unique advantages of MIDI, as it applies to multimedia, is the rich diversity of musical 
instruments and program styles that can be played back in real-time while requiring almost no over-
head processing from the computer’s CPU. This makes MIDI a perfect candidate for playing back 
soundtracks from multimedia games or over the Internet. It’s interesting to note that MIDI has taken a 
back seat to digital audio as a serious music playback format for multimedia. Most likely, this is due to 
several factors, including:

1. A basic misunderstanding of the medium.
2. The fact that producing MIDI content requires a basic knowledge of music.
3. The frequent difficulty of synchronizing digital audio to MIDI in a multimedia environment.
4. The fact that soundcards often include poorly designed FM synthesizers (although most operat-

ing systems now include a higher-quality software synth).

Fortunately, an increasing number of software companies have taken up the banner of embedding 
MIDI within their media projects and have helped push MIDI a bit more into the Web and gaming 
mainstream. As a result, it’s becoming more common for your PC to begin playing back a MIDI score 
on its own or perhaps in conjunction with a more data-intensive program or game.
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Standard MIDI files
The accepted format for transmitting files or real-time MIDI information in multimedia (or between 
sequencers from different manufacturers) is the standard MIDI file. This file type (which is stored 
with a .mid or .smf extension) is used to distribute MIDI data, song, track, time signature, and tempo 
information to the general masses. Standard MIDI files can support both single and multichannel 
sequence data and can be loaded into, edited, and then directly saved from almost any sequencer 
package. When exporting a standard MIDI file, keep in mind that they come in two basic flavors: type 
0 and type 1.

 Type 0 is used whenever all of the tracks in a sequence need to be compressed into a single MIDI 
track. All of the original channel messages still reside within that track; however, the data will 
have no definitive track assignments. This type might be the best choice when creating a MIDI 
sequence for the Internet (where the sequencer or MIDI player application might not know or 
care about dealing with multiple tracks).

 Type 1, on the other hand, will retain its original track information structure and can be 
imported into another sequencer type with its basic track information and assignments left 
intact.

General MIDI
One of the most interesting aspects of MIDI production is the absolute setup and patch uniqueness 
of each professional and even semipro project studio. In fact, no two studios will be alike (unless 
they’ve been specifically designed to be the same or there’s some unlikely coincidence). Each artist will 
be unique in having his or her own favorite equipment, supporting hardware, favorite way of routing 
channels and tracks, and assigning patches. The fact that each system setup is unique and personal has 
placed MIDI at odds with the need for systems compatibility in the world of multimedia. For example, 
after importing a standard MIDI file over the Net and loading it into a sequencer, you might hear a 
song that’s being played with a totally irrelevant set of sound patches (it might sound interesting, but it 
won’t sound anything like it was originally intended). If the MIDI file is loaded into a new computer, 
the sequence will again sound completely different, with patches that are so irrelevant that the guitar 
track might sound like a bunch of machine-gun shots from the planet Gloob.

In order to eliminate (or at best reduce) the basic differences that exist between systems, a patch and 
settings standard known as General MIDI (GM) was created. In short, GM assigns a specific instrument 
patch to each of the 128 available program change numbers. Since all electronic instruments that con-
form to the GM format must use these patch assignments, placing GM program change commands at 
the header of each track will automatically configure the sequence to play with its originally intended 
sound. As such, no matter what sequencer is used to play the file back, as long as the receiving instru-
ment conforms to the GM spec the sequence will be heard using its intended instrumentation. Tables 
16.3 and 16.4 detail the program numbers and patch names that conform to the GM format (Table 
16.3 for percussion and Table 16.4 for nonpercussion instruments). These patches include sounds 
that imitate synthesizers, ethnic instruments, and/or sound effects that have been derived from early 
Roland synth patch maps. Although the GM spec states that a synth must respond to all 16 MIDI chan-
nels, the first nine channels are reserved for instruments, while GM restricts the percussion track to 
MIDI channel 10.

MIDI-BASED SYNCHRONIZATION
Just as synchronization is routinely used in audio and video production, the wide acceptance of MIDI 
and digital audio within the various media has created the need for synchronization in project studio 
and midsized production environments. Devices such as MIDI sequencers, digital audio editors, effects 
devices, and digital mixing consoles make extensive use of synchronization and time code. However, 
advances in design have fashioned this technology into one that’s much more cost-effective and  
easy-to-use—all through the use of MIDI. The following sections outline the various forms of  
synchronization that are often encountered in a MIDI-based production environment.

Simply stated, most current forms of synchronization use the MIDI protocol itself for the transmis-
sion of sync messages. These messages are transmitted along with other MIDI data over standard MIDI 
cables, with no need for additional or special connections.
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MIDI real-time messages
Although no time code-based reference is implemented, it’s important to know that MIDI has a built-
in (and often transparent) protocol for synchronizing all of the tempo and timing elements of each 
MIDI device in a system to a master clock. This protocol operates by transmitting real-time messages to 
the various instruments and devices throughout the system. Although these relationships are usually 
automatically defined within a system setup, one MIDI device must be designated as the master device 
in order to provide the timing information to which all other slaved devices are locked. MIDI real-time 
messages consist of four basic types that are each 1 byte in length:

 Timing clock—A clock timing that’s transmitted to all devices in the MIDI system at a rate of 
24 pulses per quarter note (ppq). This method is used to improve the system’s timing resolution 
and simplify timing when working in nonstandard meters (e.g., 3/8, 5/16, 5/32).

 Start—Upon receipt of a timing clock message, the start command instructs all connected 
devices to begin playing from the beginning of their internal sequences. Should a program be in 
midsequence, the start command repositions the sequence back to its beginning, at which point 
it begins to play.

 Stop—Upon the transmission of a MIDI stop command, all devices in the system stop at their 
current positions and wait for a message to follow.

GM percussion instrument patch map (Channel 10).

35. Acoustic Bass Drum 59. Ride Cymbal 2

36. Bass Drum 1 60. Hi Bongo

37. Side Stick 61. Low Bongo

38. Acoustic Snare 62. Mute Hi Conga

39. Hand Clap 63. Open Hi Conga

40. Electric Snare 64. Low Conga

41. Low Floor Tom 65. High Timbale

42. Closed Hi-Hat 66. Low Timbale

43. High Floor Tom 67. High Agogo

44. Pedal Hi-Hat 68. Low Agogo

45. Low Tom 69. Cabasa

46. Open Hi-Hat 70. Maracas

47. Low Mid Tom 71. Short Whistle

48. Hi Mid Tom 72. Long Whistle

49. Crash Cymbal 1 73. Short Guiro

50. High Tom 74. Long Guiro

51. Ride Cymbal 1 75. Claves

52. Chinese Cymbal 76. Hi Wood Block

53. Ride Bell 77. Low Wood Block

54. Tambourine 78. Mute Cuica

55. Splash Cymbal 79. Open Cuica

56. Cowbell 80. Mute Triangle

57. Crash Cymbal 2 81. Open Triangle

58. Vibraslap

Note: In contrast to Table 16.3, the numbers in Table 16.4 represent the percussion keynote numbers on a MIDI key-
board, not program change numbers.

Table 16.3Table 16.3
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GM Non-percussion Instrument Patch Map with Program Change Numbers.

1. Acoustic Grand Piano 39. Synth Bass 1

2. Bright Acoustic Piano 40. Synth Bass 2

3. Electric Grand Piano 41. Violin

4. Honky-tonk Piano 42. Viola

5. Electric Piano 1 43. Cello

6. Electric Piano 2 44. Contrabass

7. Harpsichord 45. Tremolo Strings

8. Clavi 46. Pizzicato Strings

9. Celesta 47. Orchestral Harp

10. Glockenspiel 48. Timpani

10. Music Box 49. String Ensemble 1

12. Vibraphone 50. String Ensemble 2

13. Marimba 51. SynthStrings 1

14. Xylophone 52. SynthStrings 2

15. Tubular Bells 53. Choir Aahs

16. Dulcimer 54. Voice Oohs

17. Drawbar Organ 55. Synth Voice

18. Percussive Organ 56. Orchestra Hit

19. Rock Organ 57. Trumpet

20. Church Organ 58. Trombone

21. Reed Organ 59. Tuba

22. Accordion 60. Muted Trumpet

23. Harmonica 61. French Horn

24. Tango Accordion 62. Brass Section

25. Acoustic Guitar (nylon) 63. SynthBrass 1

26. Acoustic Guitar (steel) 64. SynthBrass 2

27. Electric Guitar (jazz) 65. Soprano Sax

28. Electric Guitar (clean) 66. Altto Sax

29. Electric Guitar (muted) 67. Tenor Sax

30. Overdriven Guitar 68. Baritone Sax

31. Distortion Guitar 69. Oboe

32. Guitar harmonics 70. English Horn

33. Acoustic Bass 71. Bassoon

34. Electric Bass (finger) 72. Clarinet

35. Electric Bass (pick) 73. Piccolo

36. Fretless Bass 74. Flute

37. Slap Bass 1 75. Recorder

38. Slap Bass 2 76. Pan Flute

Table 16.4Table 16.4

(Continued )
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 Continue—Following the receipt of a MIDI stop command, a MIDI continue message instructs 
all instruments and devices to resume playing from the precise point at which the sequence was 
stopped. Certain older MIDI devices (most notably drum machines) aren’t capable of sending or 
responding to continue commands. In such a case, the user must either restart the sequence from 
its beginning or manually position the device to the correct measure.

Song position pointer
In addition to MIDI real-time messages, the Song Position Pointer (SPP) is a MIDI system common 
message that isn’t commonly used in current-day production. Essentially, SPP keeps track of the current 
position in the song by noting how many measures have passed since the beginning of a sequence. Each 
pointer is expressed as multiples of six timing-clock messages and is equal to the value of a 16th note.

The song position pointer can synchronize a compatible sequencer or drum machine to an external 
source from any position within a song containing 1024 or fewer measures. Thus, when using SPP, it is 
possible for a sequencer to chase and lock to a multitrack tape from any measure point in a song.

Continued.

77. Blown Bottle 103. FX 7 (echoes)

78. Shakuhachi 104. FX 8 (sci-fi)

79. Whistle 105. Sitar

80. Ocarina 106. Banjo

81. Lead 1 (square) 107. Shamisen

82. Lead 2 (sawtooth) 108. Koto

83. Lead 3 (calliope) 109. Kalimba

84. Lead 4 (chiff) 110. Bag pipe

85. Lead 5 (charang) 111. Fiddle

86. Lead 6 (voice) 112. Shanai

87. Lead 7 (fifths) 113. Tinkle Bell

88. Lead 8 (bass p lead) 114. Agogo

89. Pad 1 (new age) 115. Steel Drums

90. Pad 2 (warm) 116. Woodblock

91. Pad 3 (polysynth) 117. Taiko Drum

92. Pad 4 (choir) 118. Melodic Tom

93. Pad 5 (bowed) 119. Synth Drum

94. Pad 6 (metallic) 120. Reverse Cymbal

95. Pad 7 (halo) 121. Guitar Fret Noise

96. Pad 8 (sweep) 122. Breath Noise

97. FX 1 (rain) 123. Seashore

98. FX 2 (soundtrack) 124. Bird Tweet

99. FX 3 (crystal) 125. Telephone Ring

100. FX 4 (atmosphere) 126. Helicopter

101. FX 5 (brightness) 127. Applause

102. FX 6 (goblins) 128. Gunshot

Table 16.4Table 16.4
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Using such a MIDI/tape setup, a specialized sync tone is transmitted that encodes the sequencer’s 
SPP messages and timing data directly onto tape as a modulated signal. Unlike SMPTE time code, the 
encoding method wasn’t standardized between manufacturers. This lack of standardization prevents 
SPP data written by one device from being decoded by another device that uses an incompatible pro-
prietary sync format.

Unlike SMPTE, where tempos can be easily varied by inserting a tempo change at a specific SMPTE 
time, once the SPP control track is committed to tape, the tape and sequence are locked into this pre-
determined tempo or tempo change map. SPP messages are usually transmitted only while the MIDI 
system is in the stop mode, in advance of other timing and MIDI continue messages. This is due to the 
relatively short time period that’s needed to locate the slaved device to the correct measure position.

MIDI time code
MIDI time code (MTC) was developed to allow electronic musicians, project studios, video facilities, 
and virtually all other production environments to cost-effectively and easily translate time code into 
time-stamped messages that can be transmitted via MIDI. Created by Chris Meyer and Evan Brooks, 
MTC enables SMPTE-based time code to be distributed throughout the MIDI chain to devices or instru-
ments that are capable of synchronizing to and executing MTC commands. MTC is an extension of 
MIDI 1.0, which makes use of existing message types that were either previously undefined or were 
being used for other non-conflicting purposes. Since most modern recording devices include MIDI 
in their design, there’s often no need for external hardware when making direct connections. Simply 
chain the MIDI cables from the master to the appropriate slaves within the system (via physical cables, 
USB, or virtual internal routing). Although MTC uses a reasonably small percentage of MIDI’s avail-
able bandwidth (about 7.68% at 30 fr/s), it’s customary (but not necessary) to separate these lines 
from those that are communicating performance data when using MIDI cables. As with conventional 
SMPTE, only one master can exist within an MTC system, while any number of slaves can be assigned 
to follow, locate, and chase to the master’s speed and position. Because MTC is easy to use and is often 
included free in many system and program designs, this technology has grown to become the most 
common and most straightforward way to lock together such devices as DAWs, modular digital multi-
tracks, and MIDI sequencers, as well as analog and videotape machines (by using a MIDI interface that 
includes a SMPTE-to-MTC converter).

The MTC format can be divided into two parts:

 Time code.
 MIDI cueing.

The time code capabilities of MTC are relatively straightforward and allow devices to be synchronously 
locked or triggered to SMPTE time code. MIDI cueing is a format that informs a MIDI device of an 
upcoming event that’s to be performed at a specific time (such as load, play, stop, punch in/out, reset). 
This protocol envisions the use of intelligent MIDI devices that can prepare for a specific event in 
advance and then execute the command on cue.

MTC is made up of three message types: quarter-frame messages, full messages, and MIDI cueing 
messages.

 Quarter—frame messages—These are transmitted only while the system is running in real or 
variable speed time, in either forward or reverse direction. True to its name, four quarter-frame 
messages are generated for each time code frame. Since eight quarter-frame messages are required 
to encode a full SMPTE address (in hours, minutes, seconds, and frames—00:00:00:00), the 
complete SMPTE address time is updated once every two frames. In other words, at 30 fps, 
120 quarter-frame messages would be transmitted per second, while the full time code address 
would be updated 15 times in the same period. Each quarter frame message contains 2 bytes. 
The first byte is F1, the quarter-frame common header, while the second byte contains a nibble 
(four hits) that represents the message number (0 through 7) and a nibble for encoding the 
time field digit.

 Full messages—Quarter-frame messages are not sent in the fast-forward, rewind, or locate 
modes, as this would unnecessarily clog a MIDI data line. When the system is in any of these 
shuttle modes, a full message is used to encode a complete time code address within a single 
message. After a fast shuttle mode is entered, the system generates a full message and then places 
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itself in a pause mode until the time-encoded slaves have located to the correct position. Once 
playback has resumed, MTC will again begin sending quarter-frame messages.

 MIDI cueing messages—MIDI cueing messages are designed to address individual devices or 
programs within a system. These 13-bit messages can be used to compile a cue or edit decision 
list, which in turn instructs one or more devices to play, punch in, load, stop, and so on at a 
specific time. Each instruction within a cueing message contains a unique number, time, name, 
type, and space for additional information. At the present time, only a small percentage of the 
possible 128 cueing event types has been defined.

SMPTE/MTC Conversion. Although MTC is commonly implemented within a software or hardware 
system itself (that’s the functional and economic beauty of it), whenever a hardware device doesn’t 
talk MTC (but only a flavor of the SMPTE protocol), a SMPTE-to-MIDI converter must be used, Figure 
16.37. These conversion systems are available as stand-alone devices or as an integrated part of a 
multiport MIDI interface/patch bay/synchronizer system. Certain analog and digital multitrack systems 
include a built-in MTC port within their design, meaning that the machine can be synchronized to a 
DAW/sequencing system without the need for any additional hardware, beyond a MIDI interface.

SMPTE/MIDI interface DAW/sequencer

SMPTE MTC

Analog multitrac

FIGURE 16.37 
SMPTE time code can be easily converted to MTC (and vice versa) for distribution throughout a production system.




